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Chapter 1 

Introduction 

The human ability to perceive speech is often taken for granted. After all, this is 

something we all learn to do as infants and use throughout our daily lives, usually 

without conscious effort. Ironically, this process is actually quite complicated. Despite 

several decades of vigorous research, there are no definitive explanations for many of 

the fundamental issues involved in the perception of speech [52,58,75,88]. Scientists 

cannot yet explain precisely how the human listener converts the speech signal into 

linguistic units, and how these units are employed to extract the message intended 

by the talker. To date, speech remains a paradox. At an abstract level, speech 

is encoded in discrete and invariant units, such as phonemes, distinctive features, or 

words. At a physical level, however, the speech signal is continuous, and appears to be 

quite variable. Researchers have long been challenged to understand the relationship 

between these two contrasting levels of representation. 

This thesis reports an investigation into the acoustic nature of the speech signal. 

Specifically, it explores the utility of a discrete, acoustic level of representation whose 

units can be automatically determined from the speech signal. The motivation for 

this approach will be discussed in the remaining sections of this chapter. 



CHAPTER 1.   INTRODUCTION 

1.1 The Discrete Nature of Speech 

All languages appear to make use of a finite number of distinguishable, mutually 

exclusive sounds which are concatenated together in time to produce speech. These 

basic linguistic units are called phonemes, and possess unique articulatory configura- 

tions [28]. The word 'mitt' for example consists of the three-phoneme sequence /m/, 

/i/, and /t/, where the /m/ is produced by closing the mouth, lowering the velum, 

and vibrating the vocal folds while exhaling. Words that differ in their phonemic form 

have different linguistic meanings. Replacing the phoneme /m/ by /n/ changes the 

word 'mitt' to 'knit.' The English language has an inventory of some 40 phonemes 

containing vowels, semivowels, nasals, aspirants, fricatives, and stops [67]. 

It is widely accepted that a phoneme may be characterized by a small set of dis- 

tinctive features, where a feature is a minimal unit which distinguishes two maximally- 

close phonemes [12,53]. For instance, the phonemes /d/ and /t/ are distinguished 

by the feature voice. Phonemes which share a given feature form natural classes with 

common characteristics. In English for example, the feature nasal is shared by the 

phonemes /m/, /n/, and /rj/. It is believed that around fifteen to twenty distinctive 

features are necessary to account for phonemic contrasts in all languages of the world, 

although a given language will typically require only ten to fifteen of these features 

[112]. Distinctive features are powerful descriptors, since they describe speech with a 

minimum amount of redundancy and can be used to characterize significant linguistic 

generalizations [6,30]. 

1.2 The Continuous Nature of Speech 

In stark contrast to a phonemic level of representation, which is discrete and 

invariant, the speech signal is continuous and exhibits a considerable amount of vari- 

ability. One of the most notable sources of variability stems from the production of 

the phonemes themselves.  Speech is generated by moving the articulators through 
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Figure 1.1: The continuous nature of speech. 

Digital spectrogram of the sentence 'Two plus seven is less than ten,' spoken by a male 
talker. The utterance illustrates some common kinds of coarticulation found in continuous 
speech [123]. A time-aligned phonetic and orthographic transcription of the sentence are 
shown below the spectrogram. 

a coordinated series of gestures guided by the target articulations of the individual 

phonemes [28,36]. Due to inertia and the fact that the articulators are controlled sep- 

arately, the boundaries between the realizations of adjacent phonemes are blurred, 

so that it is not possible to identify precisely where the realization of one phoneme 

ends and the next one begins. As a result, the acoustic realization of a phoneme will 

depend on the immediate phonemic environment. This contextual influence is known 

as coarticulation. 

A concrete illustration of how phonemic information manifests itself in the acous- 

tic signal is shown in Figure 1.1 which contains a spectrogram of the sentence 'Two 

10 



CHAPTER 1.   INTRODUCTION 

plus seven is less than ten,' spoken by a male speaker. As Zue has discussed [123], this 

sentence contains a number of common examples of the influence of local context on 

the acoustic properties of underlying phonemes. Consider for example, the acoustic 

characteristics of the phoneme /t/, which starts the first and last words of the sen- 

tence. In both cases the phoneme is realized as a closure followed by a burst. Close 

examination of the spectrogram reveals that the burst characteristics are slightly dif- 

ferent. In particular, the burst frequency is lower for the first /1/ than for the second, 

a direct consequence of anticipatory coarticulation caused by the rounded vowel /u/ 

in the word 'two.' 

Another example of coarticulation may be found in the acoustic realization of the 

phoneme /s/ in the three words 'seven,' 'less,' and 'ten.' The second /e/ is influenced 

by the adjacent /l/, such that the second formant shows articulatory undershoot, 

while the third /s/ is heavily nasalized, as evidenced by the smearing of the first 

formant. Other examples of coarticulation may be found in the production of the 

strident fricatives. The spectra corresponding to the /z/ in 'is,' and the /s/ in 'less,' 

show an increase in the lower-cutoff frequency near the end of the segment. In the 

first case, the increase is due to the following lateral consonant, while in the second 

case the increase is due to the following dental fricative, which is more anterior in its 

place of articulation than the /s/. 

In addition to coarticulation, the acoustic realization of a phoneme is dependent 

on the phonology incorporated by the speaker. Although the distinction between 

these two phenomena is often difficult to delineate clearly, it is evident that regular 

changes take place in sounds when they occur in different relationships with other 

sounds. The resulting transformations can often dramatically affect the acoustic 

realization of a phoneme. An example of such a transformation would be the /s 5/ 

sequence being realized as a long [§] in the word pair 'gas shortage,' or the /d y/ 

sequence begin realized as a [j] in the word pair 'did you.' These effects, which are 

both illustrated in Figure 1.2, are instances of palatalization, which is a common 

phonological transformation in American English.   These examples are not solely 

11 
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kHi   4 : 
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Figure 1.2: Examples of palatalization in American English. 

Digital spectrogram of the word pairs 'gas shortage,' and 'did you,' spoken by a male talker. 
The utterances illustrate a common phonological transformation in American English. 

caused by coarticulation, since the effect is not generally found in word pairs such as 

'wash socks,' or 'I did,' where these phoneme sequences are reversed. The degree to 

which these effects are found in the speech signal depends on the speaking style and 

speaking rate of the talker, and also depends on the dialect. 

Although coarticulatory and phonological effects are often viewed as complicat- 

ing the decoding process, they can provide redundant sources of information about 

the nature of adjacent sounds, and can serve as valuable sources of suprasegmental 

information. For example, the phoneme /u/, which is considered a back vowel, is 

regularly fronted in an alveolar environment as in the word 'dune,' illustrated in Fig- 

ure 1.3 [67]. Knowledge of this phenomenon should make it easier to distinguish a 

fronted /u/ from other high, front vowels in the same context, such as /i/ in 'dean.' 

12 
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Figure 1.3: Common acoustic realizations of the phoneme /u/. 

Digital spectrogram of the words 'boom,' and 'dune,' spoken by a male talker. The ut- 
terances illustrate a regular variation of the realization of the phoneme /u/ in American 
English. 

In cases where the underlying phoneme sequences are identical, the phonology 

of a language will often provide suprasegmental information about syllable or word 

boundaries. In the word pairs 'great rain' and 'grey train,' or 'at ease' and 'a tease,' for 

instance, contrasting realizations of the phoneme /t/ can help suggest the location 

of the syllable boundary. In these examples, which are illustrated in Figure 1.4, 

the /t/ will typically be realized as an unreleased, retroflexed, flapped, or aspirated 

stop, respectively [15,68,83,95]. Thus, a knowledge of phonology and coarticulation 

combined with an appropriate level of detail in the acoustic-phonetic description can 

help decode the speech signal. 

13 
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Figure 1.4: Word boundary effects. 

Digital spectrogram of the word pairs 'grey train,' 'great rain,' 'a tease,' and 'at ease,' 
spoken by a male talker. The utterances illustrate a regular variation of the realization of 
the phoneme ft/ at word boundaries in American English. 
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CHAPTER 1.   INTRODUCTION 

1.2.1 Describing Speech Sounds 

Since coarticulation causes the acoustic realization of a phoneme to vary as a 

function of context, scientists often find it useful to describe the sequences of speech 

sounds with a more precise label than the phoneme. The units of choice are usually 

phones, which have a rich inventory of symbols with which to describe sound segments 

in the speech signal [67]. Thus, the rounded /t/ and nasalized /s/ in Figure 1.1 

could be described by the phones [t], and [s], respectively. The amount of detail 

that is useful depends on the purpose'of the transcription. An underlying phoneme 

is typically described by a single allophone, although the inventory of units is often 

enhanced to include significant contextual variations in the realization of a phoneme 

[67]. For instance, a flap is often used to describe the production of the phoneme /t/ 

in a word such as 'butter' in American English. 

Speech researchers often align a phonetic transcription with the acoustic signal in 

order to be able to measure properties of the individual phones [26,71]. Boundaries 

are typically located at places where significant feature changes take place, such as the 

onset or offset of voicing. Often, however, it is difficult to know where to place such 

boundaries [71]. This is especially true for the liquids /l/ and /r/, and glides /w/ 

and /y/, since their acoustic realizations often vary slowly in time [26]. An example 

of a time-aligned phonetic transcription is shown at the bottom of Figure 1.1. This 

figure illustrates that an aligned phonetic transcription essentially marks significant 

acoustic landmarks in the speech signal. 

1.2.2 Sources of Variability in Speech 

In addition to the source's of variation described previously, there are many extra- 

linguistic factors which also affect the acoustic properties of the speech signal. Some 

of these factors include: 

15 



CHAPTER 1.   INTRODUCTION 

• Environment. The acoustic signal often contains information about the phys- 

ical environment which can complicate the decoding process [37]. If speech is 

recorded with a microphone, the properties of the signal depend on the recording 

apparatus and the nature of the recording conditions. 

• Inter-speaker differences. The acoustic characteristics of speech sounds depend 

upon the physiological structure of the vocal apparatus. In particular, there 

can be large acoustical differences in the speech of men, women, and children. 

In addition, the speaking rate can vary from one speaker to another. 

• Intra-speaker differences. The same speaker can pronounce an utterance differ- 

ently on separate occasions for many reasons including sickness, mood, audience, 

and stress patterns on the word or phrase. 

Finally, it is also possible for a speaker to occasionally distort the acoustic real- 

ization of a phoneme so severely that it cannot be identified, despite a knowledge of 

the phonetic environment [123]. These distortions are tolerable because, in addition 

to acoustic-phonetic knowledge, listeners are able to apply phonotactic, phonolog- 

ical, syntactic, prosodic, semantic, and pragmatic constraints to help recognize an 

utterance. 

1.3     Decoding the Speech Signal 

For many decades scientists have been seeking to understand the decoding process 

which maps the speech signal to words in a lexicon. An indication of the current state 

of knowledge may be obtained by measuring the degree to which this process can be 

emulated by a machine. A survey of available literature indicates that the current 

performance of automatic speech recognition systems falls well below human capabil- 

ities [23,58]. In order to obtain acceptable performance levels, recognition tasks are 

typically limited along one or more dimensions by restricting the vocabulary size, ap- 

plying syntactic constraints, training the system to a single speaker and/or requiring 
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that words be spoken in isolation [52,75,123]. For many years in fact, the seemingly 

overwhelming amount of variation present in the signal combined with the slow rate 

of progress in quantifying acoustic-phonetic knowledge caused many researchers to 

speculate that there was a limited amount of phonetic information which could be 

recovered from the speech signal, and that the answer to speech recognition lay in 

incorporating constraint provided by sources such as syntax, semantics, and prosody 

[19,21,96]. In the following analogy, Hockett presents a common sentiment about the 

nature of the acoustic-phonetic information encoded in the speech signal [48]: 

"Imagine a row of Easter eggs carried along a moving belt; the eggs are 
of various sizes, and variously colored, but not boiled. At a certain point, the 
belt carries the row of eggs between the two rollers of a wringer, which quite 
effectively smash them and rub them more or less into each other. The flow 
of eggs before the wringer represents the series of impulses from the phoneme 
source; the mess that emerges from the wringer represents the output of the 
speech transmitter. At a subsequent point, we have an inspector whose task 
it is to examine the passing mess and decide, on the basis of the broken and 
unbroken yolks, the variously spread out albumin, and the variously colored 
bits of shell, the nature of the flow of eggs which previously arrived at the 
wringer." 

A study by Cole and Zue nearly ten years ago clearly showed that the acoustic 

signal, even as displayed in the form of a spectrogram, is rich in phonetic information, 

and is not nearly as barren and impoverished as many had claimed [18,122]. However, 

phonetic recognition accuracies on the order of human levels of performance have yet 

to be attained by machine [52,58]. Although scientists are aware of many kinds of 

variability that affect the speech signal, a rigorous understanding of the relationship 

between the acoustic signal and items in the lexicon remains elusive. As illustrated 

in Figure 1.5, there are several ways to model the relationship between the speech 

signal and the lexicon. The following sections describe each of these approaches in 

more detail. 
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Lexicon 

Phonological Units 

© 
B Acoustic Units 

© 
Speech Signal 

Figure 1.5: Alternative strategies for decoding the speech signal. 

In path 'A' the signal is mapped directly to words in the lexicon. In path 'B' the signal is 
transformed into a set of phonological units which represent words in the lexicon. In path 
'C the signal is transformed into a set of acoustic units which can subsequently map to 
either phonological units or words in the lexicon. 
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1.3.1    Whole Word Units 

The simplest model of the decoding process is one which assumes that there is no 

intermediate level of description of the speech signal. Each entry in the lexicon has 

a speech model which is independent from all other models. This approach corre- 

sponds to path 'A' in Figure 1.5. From an implementation perspective, this approach 

is highly attractive because of its simplicity. Many successful speech recognition 

systems have embraced this approach, and avoid any intermediate representation of 

the speech signal by performing whole-word recognition [23]. The advantage of this 

approach appears to be its ability to. model word-internal variabilities with greater 

accuracy than approaches based on smaller sized units [13]. Using word-sized units 

usually limits the capabilities of these approaches to small-vocabulary tasks, due to 

the limited amount of training data available for individual words. For larger tasks, 

it appears that some form of sub-word unit is necessary [73,117]. 

In principle, approaches which advocate an intermediate linguistic level of repre- 

sentation should theoretically be able to handle more challenging tasks. This type 

of approach, which corresponds to path 'B' in Figure 1.5, is also supported by com- 

pelling evidence for the existence of an intermediate level of description of items in 

the lexicon [88]. For instance, it is difficult to explain common speech production 

errors such as substitutions and exchanges, without assuming some kind of segmental 

organization of words [39,105]. There is also evidence from studies of perception and 

short-term memory errors that words are represented in the lexicon in terms of seg- 

ments [57,81,115]. In fact, one of the fundamental assumptions of linguistic analysis 

is that words can be represented as a sequence of discrete units [6]. For these reasons, 

whole-word matches have been compared to approaches more likely utilized by infants 

in the early learning stages of speech perception [56], or by animals responding to 

simple oral commands [34]. 
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1.3.2    Phonological Units 

As Fant pointed out over 25 years ago, there are at least three ways to describe 

the speech signal with an intermediate level of description [30]. First, speech may 

be considered to be a set of overlapping importance functions, each describing the 

strength of a particular phoneme at any given time. Alternatively, speech can be 

viewed as a series of asynchronous features with binary, or continuous degrees of 

strength. Finally, speech may be seen as a sequence of minimal sound segments, 

the boundaries of which are defined by distinct changes in the signal. These three 

perspectives are illustrated in Figure' 1.6. Although these interpretations of speech 

might at first appear somewhat different, they are in fact quite compatible with each 

other. 

Fant's first view of speech corresponds to how a phoneme is realized in the acous- 

tic signal. Although every phoneme has a canonical articulatory configuration, the 

production of a sequence of phonemes does not produce a corresponding sequence 

of distinct acoustic segments. As was described previously, the articulators spend a 

finite amount of time moving from one articulatory configuration to another. Instead 

of a sequence of concatenated static articulations then, it is more appropriate to view 

the realization of phonemes as a continuous sequence of articulatory gestures. This 

is true for all sounds, but is especially applicable to time-varying sounds where there 

is often little or no stationary acoustic interval in the signal. Often, for example, the 

phoneme /t/ in a word such as 'butter' is realized as a flap, which is a quick, contin- 

uous gesture of the tongue tip moving to and from the roof of the mouth. Another 

example of a gesture is the realization of the phoneme /w/ in a word such as 'away,' 

where the lips are typically moving continuously to and from an extreme rounded po- 

sition. These two effects are illustrated in Figure 1.7. The concept of such gestures, 

and the reality that there are no clear phonemic boundaries in the speech signal, are 

captured in terms of Fant's time-varying importance functions. For the most part, 

such functions are usually considered abstract, although there have been attempts to 

extract such functions from the acoustic signal [79]. Such a task would seem to be 

20 



CHAPTER 1.   INTRODUCTION 

Phoneme Sequence 

r ■ 
■ 
L. 

Phonemic Realization 

/ 

Distinctive Features 

[         1 r.  L 

■ES 
VniViüjVQ.i.'.M.'.'.'.'.i.'.1.'.1^ 

■titllHlltHMHIIIIIII "i '■ M —* 

Sound Segments 

L I 

Time 

Figure 1.6: Alternative perspectives of speech. 

Fant's perspectives of the speech signal [30]. From top to bottom they correspond to: 
(1) a sequence of ideal non-overlapping phonemes, (2) a sequence of continuously varying 
importance functions relating the influence of a phoneme on the speech waveform, (3) an 
overlapping sequence of features properties which may extend over several speech segments, 
and (4) a sequence of minimal sound segments, the boundaries of which are defined by 
distinct changes in the speech signal. 
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Figure 1.7: Spectrograms of the words 'butter,' and 'away.' 

Digital spectrogram of the words 'butter,' and 'away,' spoken by a male talker. 

extremely difficult, since scientists do not fully understand the complex relationship 

between articulator configurations and the acoustic signal. 

Fant's view of speech as asynchronous feature functions corresponds directly to 

distinctive feature theory discussed previously. The uncertainty about the contin- 

uous or discrete nature of the features reflects the fact that scientists do not yet 

fully understand the acoustic correlates of these features [18,26,32,33,123]. Although 

theoretically such features properties are either present or absent, it is conceivable 

that in practice it might prove necessary to represent a property with some form of 

probability or strength [61]. 

Fant's final view of speech as a sequence of minimal sound units is also based 

on distinctive features. Instead of overlapping segments, however, the speech signal 

is divided into a sequence of minimal sound segments, where a segment boundary 
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is associated with the absolute or relative appearance or discontinuation along the 

time scale of one or more feature properties. In principle, this perspective is similar 

to that provided by a narrow phonetic transcription of the speech signal. In prac- 

tice, however, the inventory of phonetic units used to describe the speech signal is 

usually only slightly larger than the number of phonemes found in the language [67]. 

This discrepancy points out a fundamental problem with the use of the phone as a 

phonological unit for decoding the speech signal. 

Unlike phonemes or distinctive features, there are no constraints which limit the 

number of phones that can be used to describe the speech signal. Phones are descrip- 

tive units, and are intended to be used as a tool for describing the speech signal [67]. 

In this respect they are an extremely useful representation for scientists studying the 

languages of the world. However, there is no criterion defining how many phones 

are necessary or sufficient to describe the speech signal. It is therefore difficult to 

determine precisely how many phones are required to provide accurate coverage of 

the speech signal, and it is difficult to justify using one particular inventory of phones 

instead of another. The net result is that a selected inventory of phones can be 

somewhat arbitrary. This point can be verified by observing the various numbers of 

allophones incorporated by speech recognition systems which use the allophone as the 

basic phonological unit. In American English for instance, the number of allophones 

incorporated into these systems can range from 40 to 60 [54,59,96]. 

The issue of accountability is also faced by all variants of the allophone, such as di- 

phones, tri-phones, or phonemes-in-context [14,59,86,116]. Typically, such approaches 

expand the inventory of phones by incorporating context, since contextual factors are 

known to have an important influence on the realization of a phone. Once again 

however, there is no rigorous criterion for determining when the inventory of units is 

complete. To illustrate this point, one need only consider the fact that the acoustic 

realization of a voiceless stop consonant will often depend on the stress of the local 

environment [76]. In a phrase such as 'a papa,' for instance, the first /p/ will usually 

be aspirated while the second /p/ could easily be unaspirated, even though the local 
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contexts of the two consonants are virtually identical. 

1.3.3    Acoustic Units 

All phonological approaches are similar in that they apply a preconceived notion 

of the nature of the intermediate units of representation of speech to the decoding 

process. While these representations are powerful linguistic descriptions of speech, it 

is reasonable to investigate whether there are others, given that there appear to be 

shortcomings associated with the representations described previously. Specifically, 

it would be interesting to know if there were a set of descriptive units motivated from 

an acoustic perspective. Such units would be compatible with Fant's view of speech 

as a sequence of minimal sound segments, but would derive their origin from acoustic, 

rather than linguistic, criteria. 

An inventory of acoustically motivated units could be used as a criterion for jus- 

tifying a set of allophones to represent the speech signal. Such a set of units might 

suggest additional allophones which might have been otherwise overlooked. By search- 

ing for acoustic units of speech, researchers would be provided with a more rigorous 

criterion for selecting an inventory of allophones. 

Alternatively however, it is reasonable to question whether a phonetic level of 

description could be bypassed altogether. If the task of phonetic decoding is viewed as 

a general process whereby the acoustic signal is mapped to a set of phonological units 

representing a lexicon, it is possible to consider an alternative approach to decoding 

the speech signal. As illustrated by path 'C in Figure 1.5, the speech signal could be 

first transformed into a sequence of acoustic units before being subsequently mapped 

to underlying phonological units such as phonemes. From Figure 1.5 it is also clear 

that it is possible to avoid a phonological representation entirely by directly mapping 

the acoustic units to words in the lexicon [73,117]. At this point, it is perhaps too 

soon to tell which strategy would be more appropriate. It would seem however that 
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a direct mapping between the lexicon and acoustic units would sacrifice some of the 

flexibility afforded by a phonological level of representation. 

Before discussing the role of acoustic units in the decoding process any further 

however, it is necessary to consider what criterion may be used to define such units. 

As mentioned previously, Fant's criterion of an acoustic segment is essentially based 

on distinctive features [28,29,30]. Boundaries are associated with the absolute or 

relative appearance or discontinuation along the time scale of one or more feature 

properties. As Fant pointed out, there are some practical problems in implementing 

this scheme because it is difficult to tell acoustically where transitions occur in some 

features. His definition of a boundary is therefore a subjective one, and so depends 

to some extent on the investigator if segment boundaries are marked manually. The 

lack of a clear acoustic criterion for defining a boundary eliminates any possibility of 

automatically determining these sound segments. A more serious problem with this 

definition of a sound segment is that it does not gracefully describe momentary or 

time-varying articulations, such as a flap. Fant attempts to remedy this problem by 

including additional feature properties identifying transitions. No objective criterion 

for defining these properties was proposed. 

Catford also discussed the issue of segmentation, and suggested that the speech 

signal may be delineated into a sequence of sound segments [11]. His definition of 

a segment was tied to articulatory features. In a fashion similar to Fant, he first 

tried to define segment boundaries as corresponding to some change in the under- 

lying features. Likewise, he also noted the difficulties in describing momentary or 

continuous gestures. In order to provide a single general definition for a segmental 

unit, he proposed that a segment be a quasi-stationary articulatory posture flanked 

by an approaching onset and a departing offset. This definition held even when the 

intervening steady period was reduced to zero. 

Catford's definition of a sound segment provides the basis for an objective criterion 

for defining an acoustic segment. In this view speech may be described as a sequence 

of acoustic events corresponding to onsets and offsets in some representation of the 
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speech signal. An acoustic segment corresponds to the interval of speech spanning 

successive events. Note that this definition does not require the intervening interval 

to be a steady-state sound. In the acoustic realization of the /w/ in a word such 

as 'away', an onset and offset would delineate an acoustic segment, even though the 

intervening interval is unlikely to be a steady-state sound. This definition of an 

acoustic segment does not rule out the importance of alternative acoustic landmarks. 

For instance, there are many sounds for which some extreme point of articulation 

would be an appropriate point to measure, such as the point of maximum closure 

in the /w/ in the word 'away' [26], However not all speech sounds exhibit such 

extrema, and the precise nature of the extrema depends on the particular sound 

segment. Thus, it is difficult to propose a general definition for an acoustic segment 

in terms of extrema in the signal representation. For this reason, an acoustic segment 

is defined in terms of an onset and offset, since they are related to the notion of an 

articulatory gesture, and would seem to capture a basic property of all speech sounds. 

The important result of viewing speech as consisting of acoustic onsets and offsets, 

is that it provides a mechanism for deriving a purely acoustic description of speech. 

The first step in the decoding process then consists of determining the location of 

onsets and offsets in the acoustic signal. The next step is to map each segment to one 

of a finite set of acoustic units. This in turn precipitates the need for a mechanism 

for determining an appropriate set of acoustic units. 

In Fant's original description of speech as a sequence of minimal sound segments, 

each acoustic segment could be described by a bundle of phonetic features. If each 

feature could be mapped to one or more acoustic correlates, then there would be a 

one-to-one mapping between points in the phonetic feature space and points in the 

space represented by all corresponding acoustic correlates. Determining the inventory 

of acoustic units would be straightforward, since they would correspond to the points 

which inhabited this acoustic space. 

As was pointed out previously, this perspective of speech is idealized, since sci- 

entists do not yet fully understand the acoustic correlates of the distinctive features. 
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It remains to be determined if correlates can be assigned binary values. Presently, a 

point in the phonetic feature space is more likely to map to a region, or a cloud of 

points, in the acoustic space, rather than a single point, since the acoustic correlates 

have varying degrees of strength. Depending on the compactness of the clouds, it may 

still be possible to determine an inventory of units to describe the sound segments. 

Each unit would correspond to a cloud of points, and could be represented by a mean 

or centroid. This can be viewed as a clustering problem, since it is necessary to group 

all similar points into the same class, while distinguishing among sounds which are 

dissimilar. 

Since a sound segment is represented by a bundle of phonetic features, it is not 

necessary to maintain a direct relationship between a phonetic feature and one or 

more dimensions of the acoustic space. Any acoustic representation of the speech 

signal could be used, although it is clear that some representations would be better 

than others. A desirable representation is one in which sound segments having the 

same set of phonetic features are tightly clustered in the acoustic space, and well 

separated from other such clusters. However, most acoustic representations of the 

speech signal fall within the general framework of defining acoustic units in terms of 

acoustic clusters. 

One of the requirements for clustering approaches is for an extensive amount of 

data. The more points which can be gathered, the more robustly clusters will be able 

to be observed. With the availability of a large body of data [69], it is now feasible 

to perform such an investigation. The objective of this thesis is, in fact, to develop a 

methodology with which it is possible to search for meaningful acoustic regularities 

in the speech signal. More specifically, it investigates if there is evidence for acoustic 

segments in speech, and if there is evidence for regular patterns of behavior in these 

acoustic segments. The following section describes the scope of the thesis in more 

detail. 
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1.4    Thesis Scope 

Since a framework for automatically determining acoustic regularities does not yet 

exist, the major undertaking of this thesis is to generate a purely acoustic descrip- 

tion of the speech signal, and to show how it is possible to capture significant and 

meaningful regularities on the basis of acoustic information alone. 

The prime objective of this work is to automate all aspects of the proposed frame- 

work. There are three reasons for this approach. First, using well defined criteria 

for description and organization reduces the number of subjective decisions involved. 

Second, automating these processes allows for a much more extensive amount of data 

to be observed than would otherwise be possible. Presumably these two factors would 

improve the robustness and reliability of any conclusions drawn from a study of the 

data. Finally, precisely because of its objective nature, this machinery can act as an 

independent source of evidence for any hypotheses about the nature of speech. Thus, 

it would appear to be a useful aid in speech analysis since it serves as a mechanism 

to gain insight into the relationship between underlying phonological units and their 

acoustic realizations. 

Any attempt to automatically determine acoustic regularities in the speech signal 

must consider three important areas concerned with representing, describing, and 

organizing the speech signal. In the following chapter, the signal representation used 

for all subsequent acoustic analysis will be described. Specifically, the representation 

is based on the mean-rate response outputs of an auditory model developed by Seneff 

[103]. This chapter also describes the database used for all subsequent speech analysis. 

In Chapter 3, a procedure is described for automatically locating acoustic land- 

marks in the speech signal. The particular approach which is investigated is based on 

the belief that many different kinds of landmarks are important for speech analysis, 

and that it is extremely difficult to capture all of these landmarks with a single level of 

description. Thus, in the approach taken, an attempt is made to develop a procedure 

which provides a multi-level description of the speech signal.  Such a description is 
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motivated more fully in the chapter, and is described and evaluated using the dataset 

described previously. 

In Chapter 4, a procedure is described for automatically finding acoustic regu- 

larities in the speech signal. The goal of the algorithm is to produce an accurate 

description of acoustic events in the speech signal. Thus, realizations of phonemes 

that are acoustically similar should fall into the same class. If, on the other hand, a 

phoneme falls into more than one class, then the different acoustic realizations should 

suggest the presence of important contextual variations. After developing the cluster- 

ing procedure, it is applied to two different tasks. First, an examination of all speech 

sounds is made, without assuming any number of units a priori. The goal in this in- 

vestigation iss to determine what major acoustic regularities could be observed using 

spectral cross-sections of the mean-rate response outputs as the source of acoustic 

information. The second investigation examines several individual phonemes in order 

to illustrate how an acoustic clustering of data can help to suggest major sources of 

variability in the realization of a phoneme. 

In Chapter 5, some further work is described which attempts to improve the tem- 

poral and spectral properties of the mean-rate response. Furthermore, a study is 

reported which attempts to measure the statistical distribution of the mean-rate re- 

sponse outputs in order to determine if a more compact representation of the outputs 

can be motivated. 

The final chapter summarizes the results of this work, and discusses the application 

of the ideas presented in this thesis as a viable approach to decoding the speech signal. 
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Signal Representation and Database 

2.1     Signal Representation of Speech 

There are at least two important factors to consider when selecting a representa- 

tion of the speech signal. Certainly the most critical requirement of any representation 

is that it preserve the important information-bearing elements of the speech signal. 

Another desirable property of a representation is that it suppress irrelevant details in 

the speech signal. Thus, the choice of a representation often depends on the particular 

task. A useful representation for speaker identification might not be applicable for 

a word recognition task for example, because individual speaker characteristics are a 

source of extra-linguistic information in the speech signal. 

Historically, the short-time spectrum has played a major role in speech analysis. In 

this representation, the speech signal is described as a temporal sequence of spectra. 

Transitions in the underlying acoustic signal show up as differences between adjacent 

spectra. The use of this type of representation is supported by. speech production the- 

ory which indicates that the natural resonances of the vocal tract provide a concise 

description of most speech sounds [28]. There is also a substantial amount of physi- 

ological evidence suggesting that the ear performs a form of spectral analysis at the 

early processing stage [36]. This indicates that properties relevant to the perception 

of speech can be contained in a spectral representation of the speech signal. Most 

forms of spectral analysis, such as those based on the Discrete Fourier Transform or 
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Linear Prediction, do not incorporate other known properties of the human auditory 

system [85,94,99]. Although the importance of such properties remains unanswered, 

it is clear that the evolution of speech was influenced by the constraints of both the 

production and the perception mechanisms [110]. Any attempt at finding acoustic 

regularities in the speech signal would probably be well served by paying attention 

to the natural constraints of the auditory system, since it will serve to focus the 

attention on details which are likely to be perceptually important. 

Although there are many aspects of human audition that are as yet unexplained, 

scientists have begun to build systems which model the auditory process up to the 

level of the auditory nerve [1,16,40,77,103]. In particular, the model which formed 

the basis for all of the spectral representations used in this thesis was one developed 

by Seneff which incorporates several known properties of the human auditory system, 

such as critical-band filtering, half-wave rectification, adaptation, saturation, forward 

masking, and spontaneous response [103]. 

Seneff's model of the auditory system has several stages. Those stages of her 

model that are relevant to the current research are illustrated in Figure 2.1. The first 

stage is a bank of 40 linear filters equally spaced on a Bark frequency scale, with 

center frequencies spanning a range from 130 to 6,400 Hz. The frequency response 

of these critical-band filters is shown in Figure 2.2. The envelope outputs of this 

stage are known as the critical band envelopes. The second stage of Seneff's auditory 

model attempts to model the transformation from basilar membrane vibration to 

nerve fiber response. This part of the model incorporates such non-linearities as 

dynamic range compression, half-wave rectification, short-term and rapid adaptation, 

and forward masking. The outputs of this stage correspond to a probability of firing 

on the auditory nerve. The envelope outputs of this stage correspond to a short-term 

average, or mean probability of firing, and are therefore called the mean rate response. 

A final stage of Seneff's auditory, not shown in Figure 2.1, determines the synchronous 

response of each filter by measuring the extent of dominance.of information at the 

filter's characteristic frequency. The synchrony response, however, is not considered 
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Figure 2.1: Block diagram of parts of Seneff's auditory model. 

for use in this thesis. 

The mean-rate response outputs appear to enhance important acoustic landmarks 

in the speech signal. There are two aspects to this enhancement. As illustrated in 

Figure 2.3, the onsets and offsets from one sound to another appear to be sharper 

than is the case for the critical-band filter outputs. Second, forward masking appears 

to greatly attenuate many low-amplitude sounds because the output falls below the 

spontaneous firing rate of the nerve fibers. These two effects combine to sharpen 

acoustic boundaries in the speech signal. Since the characteristics of the mean-rate 

response seemed particularly well suited to the goals of this thesis, these outputs were 

used for all aspects of this work. 
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BARK 

Figure 2.2: Critical-band filter frequency response (after Seneff). 

This figure illustrates the frequency response of the critical-band filters in Seneff's auditory 
model [103]. The displays shows the response characteristics plotted along a Bark scale 
(top) [125], and a linear frequency scale (bottom). 
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'    '        Figure 2.3: Comparison of two spectral representations. 

A comparison of critical-band envelopes (top), and mean-rate response (bottom) for the 
word 'ambassador.' 
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2.2     Database Description 

Before proceeding to the following chapters, it is appropriate to describe the 

database used for all speech analysis in slightly more detail. The data used for this 

work are a subset of the TIMIT acoustic-phonetic database, which was recorded at 

Texas Instruments, and phonetically transcribed at MIT [35,69]. The entire database 

consists of 10 sentences recorded from each of 630 talkers. Two of the sentences were 

calibration sentences; the same two were spoken by all talkers. These sentences are 

useful for dialectical studies of American English [17]. Five of the sentences were 

drawn from a set of 450 phonetically compact sentences hand-designed at MIT with 

emphasis on as complete a coverage of phonetic pairs as is practical [69]. The remain- 

ing three sentences were randomly selected sentences from the Brown corpus, and 

were intended to provide examples of typical American English sentences [65,35]. 

All work reported in this thesis used the phonetically compact sentences of the 

first 200 talkers, representing a total of 1000 sentences. Typical examples of these 

sentences may be found in Table 2.1. 

Table 2.1: Typical sentences from the TIMIT database. 

"A muscular abdomen is good for your back." 
"Any contributions will be greatly appreciated." 
"A doctor was in the ambulance with the patient." 
"Rob sat by the pond and sketched the stray geese." 
"Bagpipes and bongos are musical instruments." 
"Even a simple vocabulary contains symbols." 
"Ambidextrous pickpockets accomplish more." 
"Coconut cream pie makes a nice dessert." 
"My ideal morning begins with hot coffee." 
"The small boy put the worm on the hook." 
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Chapter 3 

Acoustic Segmentation 

In Chapter 1, it was proposed that speech may be delineated into a sequence of 

acoustic segments, where a segment corresponds to the interval of speech spanning 

an onset and offset in some representation of the speech signal. In this chapter, a 

procedure is described for automatically locating acoustic landmarks in the speech 

signal. In addition to establishing a criterion for locating acoustic landmarks, an 

algorithm is developed which provides a multi-level description of these landmarks. 

This approach is motivated by the observation that it is extremely difficult to capture 

all important events with a single level of description. Finally, an analysis of the multi- 

level description is made by comparing landmarks in the acoustic structure to major 

acoustic-phonetic boundaries marked in a set of 500 manually transcribed utterances. 

3.1     Finding Acoustic Landmarks 

Given that an acoustic segment is delineated by an onset and offset, it is possible to 

construct procedures which attempt to automatically determine the location of these 

events. There are, in fact, at least two different perspectives from which to view this 

problem. One viewpoint is that an onset or offset represents a local maximum in 

the rate of change in some parameter representing the speech signal, since at these 

points the signal is undergoing significantly more change than in the neighboring 

environment. This phenomenon is illustrated in Figure 3.1 for part of the word 

'international.' By observing the distance between adjacent points in this figure, it 
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appears that the signal changes more rapidly at the boundaries between phones, and 

is more stable within phones themselves. 

Figure 3.1 suggests another view, which is that speech consists of a temporal 

sequence of quasi-stationary acoustic segments. From this perspective, the points 

within an acoustic segment are more similar to each other than to the points in ad- 

jacent segments. This criterion for an acoustic segment can be seen simply as a local 

clustering problem whereby it must be decided if any particular frame is more similar 

to the sounds immediately preceding.pr following it. Viewing the problem of find- 

ing acoustic segments from this perspective offers the advantage that the clustering 

procedure can be quite sophisticated if desired, and can be made to be adaptable to 

both short and long duration segments. 

Both views of finding acoustic events offer the advantage that only relative mea- 

sures are made, so that neither thresholds nor training are involved. Another potential 

advantage of making relative local measures is that such procedures may be insen- 

sitive to background noise or long term changes in the signal. Furthermore, such 

algorithms do not need to be tuned to the individual characteristics of a speaker. 

Finally, this procedure does not make use of the entire utterance, so it is capable of 

analyzing the speech signal virtually instantaneously. The following sections discuss 

these approaches in more detail. 

3.1.1    Locating Points of Maximum Change 

The first view of acoustic events corresponds to finding local maxima in the rate 

of change of some multi-dimensional representation of the speech signal, St- In this 

thesis, rate of change is defined to be the magnitude of the first derivative, St. Since 

most machine analysis of speech is performed in a discrete manner, the derivative 

operation needs to be approximated by a discrete operator. If the backward difference 

were used [85], a discrete rate of change function would be given by 

II&-&-1II (3-1) 
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Figure 3.1: Partial trajectory of the word 'international.' 

This figure illustrates a trajectory of the"first four phones of the word 'international,' spoken 
by a male talker. Each point in the plot corresponds to a output of the mean-rate response 
sampled every 5 ms. The dimensions of the plot correspond to the values of the first and 
second principal components which are derived in Chapter 5. Points which form a subset 
of transcribed phonetic units have been circled. The third phone corresponds to the period 
of complete closure before the release of the ft/. 
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This function computes a distance between consecutive points in the signal represen- 

tation, which matches the earlier qualitative analysis of Figure 3.1. In practice, such a 

measure of change is quite sensitive to small fluctuations in the signal representation, 

5n, so the representation is often smoothed before being differenced. 

An alternative approach is to use an operator such as a derivative of a Gaussian 

to perform both functions at the same time. The Gaussian function is given by 

0t(*) = -2f=-exp   2a2 

■V2zcr 

and has a derivative with a maximum at time -<r, and a minimum at time a. For 

a discrete approximation to a derivative, the negative of the Gaussian derivative is 

often sampled directly 

^n(cr) = —jldM 
a • t=nT 

where T is the sampling period. A new function for rate of change is then given by 

cn(a) = \\Sn * dn(cr)\\ (3.2) 

where each dimension of the Sn is convolved with dn(a). Note that this equation is a 

simple measure of change, where the sensitivity is controlled by the a of the derivative 

of the Gaussian filter. In essence, cn{cr) compares portions of the representation, Sn, 

separated by 2a. For a = j for example, the function dn(a) could be approximated 

by the sequence { — 1,1}, which reduces Equation 3.2 to Equation 3.1. 

In this thesis, the signal representation used was the mean-rate response described 

in the last chapter. Again it is important to point out that many alternative repre- 

sentations of the speech signal could be used, since cn(cr) is a general definition of 

change. For a representation such as the mean-rate response, this function captures 

energy changes in each channel. Onsets and offsets will show up as large values of 

Cn(cr). More subtle changes in the representation, such as formant transitions, will 

also show up as changes, since energy is moving from one channel to another. Fig- 

ure 3.2 illustrates several outputs of Cn(cr) for values of sigma of 5, 10, and 15 ms. All 

operations were computed with a sampling period of 5 ms. 

 ,., -.,..   .-      .39    ..  -            :      v.,.,-,.    .    .- 
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Time (seconds) 

Figure 3.2: Different measures of change. 

This figure illustrates computation of change on an utterance 'Coconut cream pie makes a 
nice dessert,' spoken by a female talker. A spectrogram of the utterance is shown at the 
top. The middle three displays correspond to the outputs of the function cn(a) defined in 
Equation 3.2 for three different sensitivities, a = 5, 10, and 15 ms. The bottom two panels 
display the speech waveform and an aligned phonetic transcription. 
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Figure 3.2 illustrates quite clearly the difficulty involved with automatically locat- 

ing meaningful acoustic landmarks in the speech signal. In some instances landmarks 

are extremely abrupt, such as at the release of a stop. Often, such events are quite 

short in duration, as is the case for the second /k/ in the word 'coconut' which is 

approximately located at time 0.5 s. In this example, the release of the /k/ is fol- 

lowed shortly thereafter by the onset of voicing in the following vowel. In order to 

be able to distinguish these two events, and to be able to accurately determine their 

location in the speech signal, a fine level of sensitivity in the rate of change function, 

cn(cr), is necessary. Note that two distinct maxima may be seen in cn(5), but only a 

single maxima is found in cn(15). Conversely however, a narrow perspective of the 

speech signal can make it difficult to distinguish gradual changes in the speech signal, 

such as transitions between vowels and semivowels, from short-term perturbations. 

As a result, a function such as cn(5) will tend to be quite noisy, and will introduce 

many spurious events. This phenomena is illustrated in the final vowel /?/, which 

has a gradual offset which is difficult for the cn(5) to distinguish from perturbations 

occurring within the vowel itself. 

3.1.2    Associations 

The second perspective for finding acoustic landmarks introduced earlier consists 

of performing a local clustering, where it is necessary to determine if a point in the 

multi-dimensional space is more similar to the points which immediately precede or 

follow it. At a simple level, this strategy is similar to the approach developed in 

the previous section. Consider, for example, the case where a = T. In this case, the 

derivative of Gaussian operator, dn(a), may be approximated bya{-l,0,l} sequence 

so that the rate of change function is given by 

cn(o") = ||5n+1-5„_i|| 

Local maxima are located in this function by looking for positive-to-negative zero- 

crossings in the first derivative of this signal.  If the same derivative of a Gaussian 
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operator is used to perform this computation, then the process reduces to looking for 

positive-to-negative zero-crossings in 

On = ||*5n-f2 — On 11 — \\Sn 
— <->n-2|| (3-3) 

Alternatively, if forward and backward distances are defined respectively as 

fn — \\Sn+2 — Sn\\ 

and 

K = \\Sn - ^-21|, 

then Equation 3.3 can be viewed as a comparison between two distances. When an is 

positive, the forward distance, /n, is greater than the backward distance, bn. Thus, 

the point Sn is more similar to its immediate past than its immediate future. When 

an is negative, the opposite is true. A positive-to-negative transition in the value of 

an therefore corresponds to a switching in association from the past to the future. 

In the previous example, the forward and backward distances were computed 

by comparing the point Sn to points two frames away. The distance criterion may 

be generalized however so that the forward distance, /„, compares the point Sn to 

some set of points immediately following it.  Conversely, the backward distance, 6n, 
—+ 

compares the point 5"n to some set of points immediately preceding it. A more 

general definition allows the possibility of adapting the sensitivity of the associations 

to the local environment, and thus alleviating some of the problems described in the 

previous section which are inherent with a fixed level of sensitivity in the rate of 

change function, cn(crj. 

One such algorithm was developed for the task of detecting nasal consonants in 

continuous speech [41]. An indication of the use of this algorithm for analysis of all 

sounds is provided by a study which compared acoustic landmarks determined by the 

associations algorithm with boundaries provided by an aligned phonetic transcription 

[42]. A quantitative measure of the match between the two descriptions was obtained 

by tabulating boundary insertions and deletions on a set of 500 utterances over a wide 
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range of sensitivity of the associations algorithm. The minimum total insertion and 

deletion error observed was 25% of the actual number of phonetic boundaries. All 

analyses indicated that it was not possible to describe all acoustic events of interest 

with a single level of description. If the sensitivity was set too high then too many 

events would be postulated. If the sensitivity was set too low however, then significant 

events would be missed. 

One way around this dilemma is to incorporate all events into a single multi-level 

structure where less significant events tend to inhabit the lower levels of the structure, 

while more significant events propagate to the higher levels in the structure. Such a 

structure would allow for a comprehensive acoustic description of the speech signal in 

a single coherent framework. The advantage of this type of representation is that it 

captures both coarse and fine acoustic information in one uniform structure. Acoustic- 

phonetic analysis is then a path-finding problem in a highly constrained search space. 

The following section describes this approach in more detail. 

3.2     Multi-level Acoustic Description of Speech 

3.2.1     Scale-Space Filtering 

In the signal processing literature, one of the more interesting procedures for 

generating a multi-level description of a signal is scale-space filtering, which was 

first proposed by Witkin [120]. This procedure determines the structure of one- 

dimensional signals by looking for inflection points at successively greater amounts of 

smoothing. In practice, this is usually achieved by convolving the signal with a second 

derivative of a Gaussian, and looking for zero crossings in the resulting output. The 

amount of smoothing is controlled by the a of the Gaussian. One of the important 

properties of a Gaussian filter is that new zero crossings will not be introduced as the 

amount of smoothing increases [4]. This property enables the scale-space structure 

to be interpreted more easily, since the location of the zero crossings can be tracked 

as a function of a. 
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For an analysis of the change function, cn(cr), the important locations in the signal 

correspond to local maxima. Thus, it is more appropriate to convolve this signal with 

a first derivative of a Gaussian, and subsequently to look for zero crossings. An 

example of this particular scale-space procedure is shown in Figure 3.3. The filtering 

operation was performed using the change function cn(5), which is the top change 

display in Figure 3.2. This input was used since it was able to capture most events 

of interest. In Figure 3.3, the dark lines correspond to local maxima in the spectral 

change waveform, while the dashed lines correspond to local minima. This figure 

clearly illustrates that, as the amount of smoothing increases, the locations of the 

zero crossings of an adjacent maximum and minimum will converge until at a certain 

level they cancel each other out. At the lowest, and most sensitive, level of the scale- 

space structure, acoustic landmarks correspond to all local maxima in the change 

function cn(5). At higher, and less sensitive levels, however, only the more robust 

local maxima are preserved. 

The scale-space procedure appears to be a useful mechanism for describing the 

structure of the acoustic signal since it incorporates all acoustic events into a single 

framework [78,119]. However, there are at least two shortcomings of this procedure for 

the analysis of speech. First, there are instances where insignificant events propagate 

to extremely high levels in the scale-space structure, solely because they are slightly 

more significant than the surrounding environment. This situation is illustrated in 

Figure 3.3 in the silence portion at the beginning of the utterance, where an acoustic 

event propagates to a very high level even though the acoustic environment is very 

homogeneous. More importantly however, landmarks which are quite distinct but 

which are near more important landmarks will disappear at a very low level in the 

scale-space description. This problem is also illustrated in Figure 3.3 in the second 

syllable of the word 'coconut,' which has a sequence of three closely spaced events 

corresponding to the release of the stop, the onset of voicing, and the point of oral 

closure. Although these events are all acoustically significant, two are eliminated at 

very low smoothing levels in the scale-space structure.  With a minimal amount of 
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Figure 3.3: Multi-level description using scale-space filtering. 

This figure illustrates computation of scale space filtering on a change function (a = 5 ms) 
for the utterance 'Coconut cream pie makes a nice dessert,' spoken by a female talker. The 
top display is a spectrogram of the utterance. The middle display contains the scale space 
structure. The vertical dimension corresponds to the a of the Gaussian derivative. Solid 
lines correspond to local maxima, dashed lines correspond to local minima. An aligned 
phonetic transcription is shown at the bottom of the figure. 
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smoothing the three narrow peaks are quickly turned into a single wide peak. This 

phenomenon would hold for any sequence of closely spaced events, and is an inherent 

part of the scale-space procedure since it is intimately tied to increasing amounts of 

smoothing in the time domain. For speech analysis, this is very unsatisfactory, since 

short events are often acoustically quite significant. This also means that the scale- 

space structure will vary as a function of the duration of a segment, which means 

that it is not very stable. 

3.2.2    Hierarchical Structuring , 

The fact that there are short events that are often quite distinct from their local 

environment suggests that a hierarchical clustering procedure, which incorporates 

some kind of temporal constraint, might be appropriate for ranking the significance 

of an acoustic event [8,24]. Such a procedure was in fact developed for this thesis, 

and appears to avoid some of the problems associated with scale-space filtering. 

The clustering algorithm which produces a multi-level description of the speech 

signal is similar to the concept used for locating acoustic events with the associations 

framework. First, the algorithm uses all events found by some procedure to define 

'seed regions.' Next, each region is associated with either its left or right neighbor 

using a similarity measure. Similarity is computed with a distance measure applied 

to the average spectral vectors of each region. When two adjacent regions associate 

with each other, they are merged together to form a single region. This new region 

subsequently associates itself with one of its neighbors. The merging process continues 

until the entire utterance is described by a single acoustic event. The process is 

described more formally in Table 3.1. 

This procedure produces a tree structure whose terminal nodes correspond to 

the N seed regions determined by the original acoustic landmarks. Nodes in the tree 

successively collapse until there is but one single region spanning the entire utterance. 

Each node in the tree splits into two subgroups.  By keeping track of the distance 
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Table 3.1: Hierarchical structuring of acoustic landmarks. 

1. Find boundaries {&;, 0 < i < N},    U<t3,    Vz < j. 

2. Create initial region set R0 = {ro{i),0 <i< N}. 
r0(i) = r(i,i + 1). 

3. Create initial distance set D0 = {do{i),0 < i < N}. 
d0(i) = d(r0(i),r0(i + l)). 

4. Until RN = {rjV(0J} = r(Q,N)~ 
For any Jfc such that dj{k - 1)> dj{k) < dj(k + 1) 

(a) rj+1(i) = rj(i),    0<i<k 

(b) rj+1(k) = merge(rj(k),rJ(k + 1)) 

(c) rJ+l(i) = r3(i + l),     k<i<N-j-l    . 

(d) Rj+1 = {ri+1(t),     0<i<N-j-l} 

(e) dj+1(i) = dj{i),    0<i<k-l 

(f) dj+i(k-l) = max(dj{k-l),d(rj(k-l),rj+1(k))) 

(g) dj+1(k) = max(dj{k + l),d{rj+1{k),rj(k + 1))) 

(h) dj+1{i) = dj(i + 1),    £ < i < N - j - 1 

(i) Dj+1 = K+i(0,    0 < i < N - j - 1} 

Definitions: 

• hi is a boundary occurring at time t{. 

• r(i,j) is a region spanning times t,- to i,-. 

• rj(i) is the ith region of the jth iteration. 

• d(i, j) is the distance between regions i and j. 

• dj(i) is the ith distance of the jth iteration. 

• merge(r(i,j),r(j,k)) combines two adjacent regions to produce a region 
r(i, k) spanning times U to £*. 

• The distances dj(-l) and dj(N - j) are infinite. 
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at which two regions merge into one, the multi-level description can be displayed 

in a tree-like fashion as a dendrogram, as illustrated in Figure 3.4 for the utterance 

'Coconut cream pie makes a nice dessert.'1 From the bottom towards the top of 

the dendrogram the acoustic description varies from fine to coarse. The release of 

the initial /k/, for example, may be considered to be a single acoustic event or a 

combination of two events (release plus aspiration) depending on the level of detail 

desired. Note that there is no single level in the dendrogram which contains all 

acoustic events of interest. For some landmarks, such as the /sd/ sequence in the 

word pair 'nice dessert,' a more sensitive description is necessary to locate an acoustic 

landmark. In other situations, such äs for the diphthong /ay/, in the word 'nice,' a 

more robust description is necessary in order to avoid internal landmarks. 

The resulting structure is a mechanism for describing all acoustic events which 

occur in the signal in a single coherent framework. The procedure for creating this 

structure is attractive because it uses only relative measures of acoustic similarity 

during construction, and as such is likely to be largely independent of the speaker, 

vocabulary, and background noise, and as a consequence is quite robust. Further, 

there are no thresholds, or other heuristics involved in constructing the structure. 

An examination of the procedure shows that for merging order to be unimportant, 

the distance function for a given region and its environment must increase monoton- 

ically. This behavior is achieved by defining the distance between regions r(i,j) and 

r(j, k) as the maximum of the distance between these regions or their subregions hav- 

ing boundary bj. An example of the structure which would result if this condition 

were not maintained .is shown in Figure 3.5. From this figure it is clear that the 

dendrogram structure is not monotonically increasing. A typical example of why this 

is so may be found in the word 'coconut.' At a level of 22.5, the acoustic segment 

corresponding to initial silence and /k/ release merges with the acoustic segment 

corresponding to the vowel /ow/.   The resulting average spectra of the new region 

1 The term dendrogram refers to the diagrammatic representation of any hierarchical grouping of 
objects [24,55]. 
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Figure 3.4: Multi-level description using a hierarchical structure. 

This figure illustrates computation of the dendrogram structure for the utterance 'Coconut 
cream pie makes a nice dessert,' spoken by a female talker. The top display corresponds 
to a spectrogram of the utterance. The middle display contains the dendrogram structure. 
The top few nodes of the dendrogram structure are not shown. The speech waveform and 
an aligned phonetic transcription are shown at the bottom of the figure. 
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Figure 3.5: A non-monotonically increasing dendrogram. 

This figure illustrates computation of the dendrogram structure which results when dis- 
tances are not propagated correctly. The top display corresponds to a spectrogram of the 
utterance. The middle display contains the dendrogram structure. The top few nodes of 
the dendrogram structure are not shown. An aligned phonetic transcription is shown at the 
bottom of the figure. 

subsequently looks much more similar to the spectra of the following /k/ closure 

than did the spectra of the vowel itself. As a result, the new region merges with the 

closure region at a level of 9.5 in the dendrogram. 

In addition to producing a structure which is difficult to interpret in some in- 

stances, the lack of a monotonically increasing structure means that the order of 

construction is important. A structure which is built in a left-to-right manner cannot 

be guaranteed to be identical to one built right-to-left, or in any other fashion. By 

ensuring that distances always increase, both problems are successfully avoided. 
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The particular distance function applied to the acoustic regions is not crucial to 

the success of the dendrogram, as long as a reasonable metric is used [24]. Currently, 

every region r(i,j) is represented by an average of the spectral frames from 6; to br 

The distance between two adjacent regions is a distance between their two average 

spectra. If the distance used is an average of all the distances between two regions, 

the result is virtually the "same, although significantly more computation is involved. 

Both of these metrics are more stable than one using a maximum or a minimum 

distance. 

The criteria used to determine an acceptable distance function between two acous- 

tic vectors were 

d(x, x) = 0 

and 

d(x, y) = d(y, x) 

The first distance between acoustic vectors which was implemented was a Euclidean 

distance, ||x - y\\. This metric is reasonable since the variance in each dimension is 

approximately the same. However, the Euclidean metric over-emphasizes the total 

gain in the region, minimizing the importance of spectral shape. This effect is il- 

lustrated in Figure 3.6, which shows that the subsegments of the vowels /a?/ and 

13-1 do not successfully cluster together. By including a measure of the correlation 

of the spectra, the dendrogram structure was improved in cases where the gains were 

significantly different. This was done by dividing the Euclidean distance by the nor- 
x * y 

malized dot product, or cosine of the angle between x and y, ,, _.,.■ _.. ■ The distance 
. -   \m\\\y\\ 

between regions was essentially Euclidean when the spectral shapes were similar, but 

was increased significantly when the spectral shapes were dissimilar. Distance metrics 

are discussed in more detail in the final chapter. 

Because each region is represented by only one spectral average, this structuring 

process is much faster than the scale-space representation which was first investigated. 

Also, because the structure depends on the relative acoustic difference of adjacent 
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kHz    « 

Transcript? n I k r mpjp 3ft dTd ft 

Figure 3.6: A dendrogram computed with a Euclidean distance metric. 

This figure illustrates computation of the dendrogram structure when a Euclidean distance 
metric is used. The top display corresponds to a spectrogram of the utterance. The middle 
display contains the dendrogram structure. The top few nodes of the dendrogram structure 
are not shown. An aligned phonetic transcription is shown at the bottom of the figure. 

regions, short events such as stop bursts, flaps, or schwas, which are acoustically 

quite different from their local environment are maintained at a very high level in the 

dendrogram, unlike their behavior in the scale-space representation. This effect can be 

clearly seen by comparing Figures 3.3 and 3.4. Additional examples of dendrograms 

may be found in Appendix A. 
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3.3     Performance Evaluation 

3.3.1    Evaluation Criterion 

An important question to ask about the dendrogram, or about any acoustic de- 

scription of speech, is whether or not it is able to capture relevant acoustic-phonetic 

landmarks which will be useful for decoding the speech signal. In the case of a multi- 

level description such as' the dendrogram, it is not sufficient to merely mark these 

locations; it is also desirable to organize the events in a meaningful fashion. Thus, for 

instance, it might be desirable that important acoustic-phonetic landmarks propagate 

to higher levels in the structure than less significant landmarks. A criterion such as 

this would explain why dendrograms in Figures 3.5 and 3.6 were considered to be 

inferior to the one displayed in Figure 3.4. 

Since the dendrogram structure provides an acoustic description of the speech sig- 

nal, it is difficult to define precisely what is, and what is not, an important acoustic 

landmark. One could argue, for instance, that any structure is a reasonable descrip- 

tion of the acoustic signal, and that no multi-level description is any better or worse 

than another. In this work, a phonetic transcription was used to determine the iden- 

tity of important acoustic-phonetic landmarks. The phonetic transcription essentially 

marks major acoustic landmarks in the speech signal, such as the release of stop con- 

sonants, the onset of voicing, or points of oral closure [104]. Although there are many 

cases where it is difficult to precisely determine the location of a boundary between 

adjacent phones, the boundaries in the phonetic transcription usually correspond to 

important landmarks which would be useful for subsequent acoustic-phonetic analy- 

ses of the speech signal. As such, they define a reasonable criterion for judging the 

structure of the dendrogram. Clearly however, differences between the dendrogram 

and the phonetic transcription are not necessarily 'errors,' especially if the differences 

occur in a systematic manner. These differences might point out inconsistencies in 

the nature of the phonetic transcription for instance. 
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If the dendrogram structure were able to organize landmarks in the speech sig- 

nal in a meaningful fashion according to the phonetic transcription, then landmarks 

which matched boundaries in the transcription should propagate to higher dendro- 

gram levels than landmarks which did not match any boundary. At some level in the 

dendrogram, it should therefore be possible to find a region, r(i,j), whose boundaries, 

bt,bj, match those of some phone in the phonetic transcription. In other words, it 

should be possible to find a path of contiguous acoustic segments in the dendrogram 

corresponding to the phones in the phonetic transcription. 

This concept was implemented by finding the sequence of acoustic segments whose 

boundaries minimized the error with phone boundaries. The criterion for determining 

errors is illustrated in Figure 3.7. In cases where the dendrogram deleted an important 

acoustic landmark, or organized it in such a fashion that it was not possible to obtain 

a match with the phonetic transcription without inserting many extra segments, a 

phonetic boundary could be deleted by the alignment procedure. Alternatively, if the 

dendrogram had too many landmarks, such that it was not possible to avoid extra 

landmarks without deleting many phonetic boundaries, insertions were permitted. 

An example of an aligned path is shown in Figure 3.8. Note that in general there is 

a one-to-one match between acoustic segments and phones, and that boundaries are 

very close to each other. 

Once an algorithm for aligning a phonetic transcription with the dendrogram had 

been developed, it was possible to gather statistics on insertions and deletions which 

provided a reasonable indication of how well the dendrogram was organizing acoustic- 

phonetic information in the speech signal. The following section describes the results 

of the evaluation in more detail. 

3.3.2    Evaluation Results 

The evaluation was based on a set of 500 utterances from 100 different talkers of 

the TIMIT database [69]. These sentences contain nearly 19,000 phones. The 10 ms 
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Figure 3.7: Dendrogram alignment procedure. 

This figure illustrates the criterion used to determine the differences of a match between 
boundaries in the dendrogram and boundaries in the phonetic transcription. The top display 
shows that when there is a one-to-one match between a pair of boundaries, the error is the 
sum of the time differences between individual boundaries. The middle display shows that 
when an extra boundary is present in the phonetic transcription, the error is the total error 
of mapping each pair of boundaries in the phonetic transcription to the pair of dendrogram 
boundaries. This corresponds to a deletion of a phonetic boundary. The bottom display 
shows that when an extra boundary is present in the dendrogram, the error is the total 
error of mapping each pair of boundaries in the dendrogram to the pair of boundaries in 
the phonetic transcription. This corresponds to an insertion of extra acoustic boundaries. 
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Figure 3.8: An aligned dendrogram. 

This figure illustrates the results of automatically aligning the phonetic transcription with 
the dendrogram. Aligned regions have been shaded in the dendrogram. 

association algorithm described earlier was used to locate acoustic landmarks. The 

signal representation, Sn, was the set of outputs of the mean-rate response, sampled 

every 5 ms. Dendrograms were constructed from the acoustic landmarks, and were 

aligned with the phonetic transcription. An evaluation of the alignments indicated 

that 3.5% of the phone boundaries were deleted while 5.0% of the phones required an 

inserted acoustic segment. An analysis of the duration differences of boundaries in 

the phonetic transcription with those found automatically indicated that 70% of the 

boundaries were within 10 ms of each other, and that over 90% were within 20 ms. 

An examination of the context of the deletion errors indicated that they were 

highly concentrated in a small number of contexts. Of the over 1750 actual phonetic 
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Table 3.2: Top ten sources of deletions. 

context % deleted total (#) 
/b/ release 38 310 
/d/ release 20 330 

nasal + closure 17 406 
(nasal or closure) + /S/ 14 129 

/g/ release 10 174 
/p/ release 10 347 
/r/ vowel 9 432 
/l/ vowel 6 422 
/t/ release . 4 500 
/k/ release 3 520 

contexts which occurred, which was less than half of the 612 theoretically possible 

combinations, deletions occurred in 221, or under 13%, of these contexts. On average, 

there were 2.9 occurrences of each deletion. The top ten sources of deletion error have 

been summarized in Table 3.2. For example, the first row of this table shows that 

38% of the 310 releases associated with the phoneme /b/ were not found in the 

aligned dendrogram path. These ten sources of error account for over 75% of all 

deletions. Specifically, over half the errors could be associated with the release of 

the six stop consonants. Fully one third could be accounted for by /b/ and /d/ 

alone. Over 15% of the errors could be accounted for by /5/ when preceded by a 

nasal or by silence and by nasal closure deletions. Nearly 10% could be accounted 

for by deleted boundaries between /r/ and /l/ and a following vowel. Some of the 

remaining significant statistics were for the /ar/, /al/, /yu/, and /or/ combinations, 

which accounted for an additional 5% of the deletions. 

The data on the insertions are slightly more difficult to analyze. One way to 

view an insertion is as splitting a phonetic segment into more than one acoustic 

segment. A diphthong such as /ay/ might be represented by two acoustic segments, 

for instance. Often however, an insertion corresponds to an acoustic segment which 

falls somewhere between two adjacent phonemes, such as a period of silence between 
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a fricative and a following vowel. In this case, it would be of interest to know the 

identities of the two phones on either side of an inserted acoustic segment. In fact, 

insertions were analyzed in this manner. If a phone was split into two or more acoustic 

regions, the acoustic segment which overlapped the most with the phone boundaries 

was assigned the phone label, while the extra segments were labeled insertions. An 

inserted segment could then be assigned a context based on the label of the adjacent 

segments. A sequence of two insertions was never observed. 

An analysis of the insertions showed that they were more diffuse than deletion 

errors. Insertions occurred in 481, or just over 27%, of the total number of actual 

contexts observed. This is more than twice the number of contexts which were ob- 

served to have deletions. On average, there were 1.8 occurrences of each inserted 

segment. In general, there appeared to be two major sources of insertions. First, 

there was often a distinct acoustic segment between two phones which was not noted 

in the phonetic transcription. A good example of this may be found in Figure 3.S 

between the /s/ in 'makes,' and the schwa in 'a.' From an acoustic perspective, there 

is a clear acoustic segment which is different from the fricative and the vowel. The 

phonetic transcription makes no note of this fact however, and marks only the onset 

of voicing. If, for some reason, the dendrogram had not organized the silence with 

the fricative, an insertion would likely have been required. This type of phenomenon 

occurred frequently when there was a change in the source of excitation. 

Another source of insertion occurred when a phonetic segment was subject to a 

significant amount of change over the course of the segment. A good example of this 

is the diphthong /a*/ in Figure 3.8 in the word 'nice.' Apart from a short region 

between the vowel and the following /s/, there are two robust acoustic segments 

which describe this vowel, one which captures the low, back portion of the vowel, 

and the other which describes the high, front portion of the vowel. Although in this 

example these regions merge to form a single acoustic segment, this is not always the 

case. A model of a diphthong might therefore need to capture the temporal acoustic 

structure in order to account for these changes. In addition to diphthongs, these types 
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Table 3.3: Top five sources of insertions. 

left context right context % error total # 
[eWeae] [s] 30 80 

[»y]   • [z] 27 56 
[wl] [eyiy] 19 161 

[f] [oar a-] 18 114 

[B] to] 14 81 

of errors also occurred in vowel-semivowel sequences where there was an extra segment 

which modeled the dynamic portion of the transition between the two phones. For 

example, the most common insertion error was in /liy/ sequences, which contained 

18 insertions out of a total of 91 occurrences (20%). The distribution of the five most 

common contexts of insertion error is shown in Table 3.3. The contexts were loosely 

grouped according to similarity, and were chosen based on the number of errors which 

occurred. Although the data in this table tend to confirm the previous discussion, 

there were many cases where the dendrogram organized the acoustic landmarks in a 

manner which made it difficult to find a good match with the phonetic transcription. 

In addition to the analysis of differences between dendrogram boundaries and 

those of the phonetic transcription, a comparison was made between the dendrogram 

heights of landmarks which were aligned to phonetic boundaries and the heights 

of those landmarks which were not aligned to phonetic boundaries. A distribution 

comparing these two is shown in Figure 3.9. By conditioning this distribution on the 

local acoustic context, further separation between these two groups is possible. Note 

that this type of information lends itself naturally to a probabilistic framework for 

finding the best path through the dendrogram. This point will be discussed in more 

detail in the final chapter. 
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Figure 3.9: Distribution of dendrogram boundary heights. 

This figure compares the distribution of the heights of those dendrogram boundaries which 
were aligned with a phonetic boundary to those which were not aligned with a phonetic 
boundary. Height is defined by the vertical dimension on the dendrogram display. 
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3.4     Chapter Summary 

This chapter investigated procedures to automatically locate acoustic landmarks 

in the speech signal. A change function, cn(cr), was motivated as a means for lo- 

cating local maxima in the rate of change of the signal representation of the speech 

signal. This function was shown to be related to an associations procedure, whereby 

similarities are computed between a given point in time and the local environments 

immediately preceding and following. Acoustic landmarks are located whenever the 

association switches from past to future. 

An analysis of these algorithms indicated that it was difficult to determine a single 

level of sensitivity capable of capturing all acoustic events of interest with a single 

level of description. Thus, a procedure was developed which provided a multi-level 

description of the speech signal by performing a time-ordered hierarchical clustering. 

An analysis of the multi-level structure on a set of 500 utterances indicated that 

over 96% of the acoustic-phonetic events of interest were located, with an insertion 

rate of less than 5%. The fact that both the deletion and insertion rate were quite 

small indicated that acoustic landmarks were being located and organized by the 

dendrogram in a meaningful way. 
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Chapter 4 

Acoustic Classification 

In Chapter 1, a method that directly maps an acoustic description of the speech 

signal to underlying phonological units used to represent lexical entries was proposed. 

The viability of such an approach depends critically on the ability to detect important 

acoustic landmarks in the speech signal. It further depends on the ability to describe 

these events in terms of an inventory of labels that captures the regularity of phonetic 

variations. In the previous chapter, a criterion for defining an acoustic landmark was 

proposed, and a procedure was described which automatically located these events. 

This chapter discusses how the resulting segments can be classified into a set of 

acoustic labels, and develops a procedure to automatically determine these labels 

from a large body of training data. 

There are at least three important criteria which need to be fulfilled by any set 

of acoustic labels. First, a set of labels must be able to capture important phonetic 

regularities. Sounds with similar phonetic features should be described by the same 

set of labels. Thus, it is reasonable for phones such as [i] or [i*] to be described by the 

same acoustic label, but much less acceptable for [s] and [e] to have the same acoustic 

label. The second important characteristic of a set of acoustic labels is that they must 

be able to distinguish between acoustic differences due to regular variations in the 

realization of a phoneme. As was discussed in Chapter 1, capturing this systematic 

behavior should provide additional sources of constraint in the decoding process, and 

is therefore a desirable property of a set of acoustic units. Finally, it is clear that a 
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set of acoustic labels should be robust across speakers and datasets. 

The ultimate goal of any approach advocating a set of acoustic units is to fully 

determine a set of labels that captures all three of these conditions. However, the 

ability to achieve this goal depends critically on the correct representation of the 

signal for all fine phonetic distinctions, and the availability of a tremendous amount 

of training data, in order to achieve robust results. These two requirements make 

this goal well beyond the scope of this thesis, and a subject for continuing research. 

Although these factors limit the scope of the investigation, they do not preclude 

developing a methodology with which" it is possible to search for acoustic regularities 

in the speech signal. In addition, it is still possible to perform some preliminary 

investigations to provide an indication of the viability of this approach. 

This chapter attempts to address two of the issues related to acoustic classification. 

First, an investigation is made which attempts to determine if it is possible to uncover 

major sources of acoustic regularity that capture basic properties of all phonemes. 

This is accomplished by applying a hierarchical clustering procedure to data from all 

phonemes, using the mean-rate response as the basis of the signal representation. 

Second, an investigation is made which attempts to demonstrate that it is possible 

to capture important context dependencies of individual phonemes. This is done by 

applying a hierarchical clustering procedure to a small number of phonemes. The goal 

of this study is to determine if there appear to be a finite number of regular acoustic 

forms which have consistent contextual dependencies. Additionally, an attempt is 

made to illustrate that these regularities can generalize across sets of phonemes with 

similar features. 

4.1     Hierarchical Clustering 

The procedure used to organize all acoustic data was a stepwise-optimal agglom- 

erative hierarchical clustering procedure [24]. This procedure was selected because it 
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produces an explicit hierarchical structure of acoustic clusters. At the highest level 

in the structure, all data are represented in a single acoustic class. At the lowest level 

in the structure, all data are represented by the original seed clusters. The objective 

is to find a level of description which can explain much of the acoustic variance in the 

data, while having a meaningful phonological interpretation. The advantage of this 

approach is that it allows for a large amount of data to be observed without requiring 

any preconceived notion about the number of acoustic classes to expect. 

In the interest of reducing the amount of computation involved in the hierarchi- 

cal clustering, a pre-clustering data reduction was achieved by merging similar data 

vectors with an iterative, nearest-neighbor procedure described in Table 4.1. The 

objective of this procedure was to reduce the number of clusters while maintaining 

adequate coverage of the data. In this procedure a vector is merged into an existing 

cluster if the distance between it and the cluster mean falls below a threshold, Dth. 

Otherwise, a new cluster is formed with this vector, and the procedure repeats. In 

the end, all clusters with membership of two or less are discarded, and the data are 

resorted into the remaining clusters. This last step ensures that each vector is truly 

sorted to its nearest cluster. This step was also taken during the analysis of any set of 

clusters of the hierarchical structure. The value of Dth was determined experimentally 

from a subset of the training data, and was set to maximize the number of clusters 

with more than two members. All distances were Euclidean distances between a data 

point and the cluster mean. 

The hierarchical clustering procedure used a stepwise-optimal approach which on 

each iteration merged the two clusters which minimized the increase of the total 

distortion, DT [24]. Total distortion was defined as the total square error between a 

cluster mean, m, and its constituents, 

£r = £EII*-™.H2 

where c,- is the ith cluster. Merging clusters c,- and Cj produces an increase in the total 
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Table 4.1: Pre-clustering procedure for data reduction. 

1. Select one random data point to form the first cluster. 

2. Until all data have been selected, 

(a) Select a data point at random from the remaining data, 

(b) Compute distance Dmin to closest existing cluster, 

(c) If Dmin < Dth 

Merge data point with closest existing cluster, 
Otherwise form a new cluster with data point. 

3. Prune all clusters with one or two members. 

4. Resort all data to their closest cluster. 

distortion /\DT of 

£ II*- 
z€c; 

where 

~     II2 m »ji |*-m,-||2 + £ \x — fhij\\2 — ||x — fh3 

x€c, 

1 
m v ■(riifhi + njfhj) 

nt- + rij 

where n; is the number of elements in the ith cluster. Merging the two clusters which 

minimizes ADr at each step results in a distance metric between clusters which is a 

Euclidean distance weighted by the number of elements in each cluster, 

d(ci,Cj) = 
riiUj 

\rrii — rrij 
Hi + Uj 

This procedure was used because it tended to favor growth by adding small clusters 

to large clusters rather than merging medium-sized clusters. The net effect was to 

produce a more stable and well-behaved structure. Note that this procedure does 

not restrict the distance metric to be Euclidean. In fact a subsequent experiment, to 

be discussed later in this chapter, found that a zero-mean distance metric produced 

superior results. 
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4.2     Coarse Acoustic Classification 

4.2.1     Signal Representation 

The first attempt at finding acoustic regularities investigated the entire inventory 

of speech sounds. For simplicity, each dendrogram segment was represented by a 

spectral average of the mean-rate response over the entire segment. As stated pre- 

viously, this particular choice determined the nature of the acoustic clusters which 

could be observed in the training data. Although the precise nature of any observed 

regularities could not be known ahead of time, it was believed that they would cluster 

along dimensions similar to manner of articulation. 

In order to assist the phonological interpretation of the acoustic organization, only 

regions which aligned with the phonetic transcription were used as training data. In 

Figure 3.8 for example, only the shaded regions were used for that utterance. This 

approach was clearly a simplification, since it assumed that a phonetic unit mapped 

to a single acoustic segment. When combined with the fact that each acoustic seg- 

ment was represented solely by an average spectral vector, it was possible that many 

dynamic events, such as diphthongs, were excessively blurred. A more sophisticated 

model which accounts for some of the temporal variation in the realization of a phone 

is discussed later in this chapter. By accepting only regions which matched the pho- 

netic transcription, it was possible to assign to each region a phonetic label which 

could be used later to help interpret the clustering results. In cases where an acoustic 

boundary had been deleted, the phone which overlapped the most with the acoustic 

region was used. In cases where an acoustic region was inserted, the same crite- 

rion was used. Thus, in an insertion, a phone label was usually associated with two 

acoustic segments. 

The combination of using an average spectral vector for each acoustic segment 

and a single acoustic segment for each phone, introduced another side effect in the 

clustering results.   By clustering with segment averages instead of individual spec- 
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tral frames, it is likely that many spurious frames were eliminated, thus reducing the 

amount of noise in the subsequent phonetic analysis of the acoustic classes. In addi- 

tion, the use of a single vector per phone eliminated phoneme duration as a possible 

factor in the clustering results. Thus, the data from phones which were inherently 

longer in duration would not overwhelm the data from shorter phones. 

A set of 500 TIMIT sentences, recorded from 100 different speakers [69], was used 

to train the classifier. These data comprised over 24 minutes of speech and contained 

over 290,000 spectral frames. Restriction to the time-aligned dendrogram regions 

reduced the data to just under 19,000 regions. The pre-clustering procedure on these 

regions produced 560 clusters covering nearly 96% of the original data. All of the data 

were then resorted into these 560 seed clusters. The distribution of the number of 

tokens found in each cluster is illustrated in Figure 4.1. The mode of this distribution 

was 6, the median 16, and the average was 34. The hierarchical clustering was then 

performed on these seed clusters. 

40.0 

Wi | Awki i IfM ,1" 
20.0       30.0        40.0       50.0       60.0       70.0        80.0       90.0       100.0 

NUMBER OF TOKENS IN A CLUSTER 

Figure 4.1: Seed clusters membership. 

This figure illustrates the distribution of the number of tokens found in each of the 560 seed 
clusters determined with the pre-clustering algorithm. 
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4.2.2     Cluster Evaluation 

The hierarchical clustering algorithm arranges the clusters in a tree-like structure 

in which each node bifurcates at a different level. The experimenter thus has the 

freedom to select the number of clusters and the associated spectral vectors for pattern 

classification. Several types of analysis were performed to help decide which clusters 

were most meaningful. 

In order to determine the stability of the clustering procedure, the clustering ex- 

periment was repeated on several different databases. An examination of the phonetic 

contents of the clusters revealed that the top three or four levels of the tree structure 

are quite stable. For instance, the top few clusters essentially separate all consonants 

from vowels. The vowel clusters subsequently divide into groups corresponding to dif- 

ferent extremes of the vowel space, while the obstruent clusters divide into subgroups 

such as silence, nasals, and fricatives. After the first few levels of the hierarchical 

structure however, the splits appear to become more data-dependent. From these 

observations it appeared that the number of clusters for reliable pattern classification 

should not exceed twenty. 

As an attempt at a more quantitative analysis of the hierarchical structure, the 

amount of distortion involved in sorting the training set into a given set of clusters was 

measured. Distortion was again defined as the total square error between a cluster 

mean and its constituents. For a given number of clusters, the set with the minimum 

total distortion was designated as the best representation of the data. Figure 4.2 

illustrates the rate of decrease in the distortion as the number of clusters increases 

from one to twenty. From this plot it may be seen that the most significant reductions 

in the distortion occur within approximately the first ten clusters. Afterwards the 

rate of decrease levels off to around 1%. 

The relative merit of a set of clusters was also judged by examining the distribution 

of phonetic information within each set. This was done by observing the distribution 

of the phone labels associated with each spectral vector in the manner described 
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18.8 28.8 

NUHBER OF CLUSTERS 

Figure 4.2: Rate of change of distortion versus number of clusters. 

previously. The distributions were computed by resorting all of the original training 

data into a given set of clusters. An example of the distributions of the phone labels 

into a set of 10 clusters may be found in Table 4.2. The distributions in this table have 

been normalized for each phone, and were rounded to the nearest percent. In general, 

a given phone tends to fall into one or two acoustic classes. The few exceptions to 

this case will be discussed shortly. For example, of the 663 [iy]'s which were observed 

in the training data, 57% fell into cluster 1, while 18% fell into cluster 2. Of the 82S 

[s]'s which were observed, 69% fell into cluster 10, while 23% fell into cluster 9. 

The average spectra associated with these 10 clusters are plotted in Figure 4.3. 

These average spectra show that the first five clusters capture information common to 

most vowels and semivowels. The average spectrum of cluster 1 shows resonances at 

low and high frequencies, which are typical of high front vowels, whereas the average 

spectrum of cluster 5 contains two low resonances, which are associated more with 
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Table 4.2: Distributions for ten clusters (percent normalized by phone). 

Phone 1 2 3 4 5 6 7 8 9 10 Total # 

[y 57 18 4 1 1 • 3 8 1 1 663 

y 43 13 6 2 1 8 12 14 1 1 131 

u 37 17 14 3 4 9 2 15 176 

& 25 45 7 9 2 5 2 5 334 

I 20 39 16 17 1 2 1 4 500 

i 20 14 22 4 5 13 3 18 893 

r 1 4 41 28 14 7 1 6 559 

a- 4 3 46 6 16 7 4 12 401 

? 3 60 23 6 3 1 2 230 

S 5 16 21 48 4 2 1 3 408 

as 6 10 28 46 3 1 1 5 334 

oy 9 6 19 54 5 3 1 3 326 

A 1 1 23 58 14 1 2 284 

aw 1 1 14 58 •■16 4 2 4 105 

a 13 64 . 18 1 2 2 371 

0? - 4 24 37 24 1 1 1 68 

u 2 20 20 33 21 3 2 61 

3 5 4 24 18 35 7 1 6 502 

U 5 6 19 9 31 21 1 8 112 

o" 2 13 26 49 6 2 2 230 

0 5 36 53 2 1 1 322 

1 1 1 3 75 17 2 1 133 

i 2 1 3 11 55 22 4 2 * 586 

w 1 . 3 9 42 40 6 265 

m 4 62 33 24 

m 1 4 47 41 7 424 

n 4 1 4 44 41 6 123 

i 
r 

50 50 4 

5 8 35 23 29 62 

i) 2 • 2 39 51 5 1 132 

n 1 1 35 58 4 735 
V 1 17 72 7 4 246 

0 9 84 7 94 

a 6 92 2 97 

d° 3 95 1 505 

gT 3 96 2 185 
t" 1 96 1 2 712 

k° 2 97 555 

a 2 97 1 1066 

p° 2 98 372 

V 2 98 306 

9 2 14 48 26 2 7 42 

? 3 1 5 3 10 13 41 25 358 
5 4 4 2 1 12 40 32 1 6 250 
e 1 66 16 4 13 119 
f 3 55 26 4 12 347 

r 6 1 3 16 49 24 1 1 190 
b 4 2 7 4 7 31 41 2 2 123 

P 2 3 4 1 3 5 26 51 4 1 308 
h 3 4 1 6 26 52 4 5 140 
a 3 3 3 3 6 19 61 31 
k 1 2 4 4 4 19 50 10 5 514 

9 3 3 8 1 4 5 15 51 7 3 151 
d 2 4 2 1 1 15 39 22 13 249 
t 1 2 1 1 8 44 32 10 509 

Z 5 10 48 38 21 
£ 2 1 3 3 6 74 12 153 
5 2 7 6 71 13 193 

J 4 7 68 20 168 
s 1 5 3 23 69 828 
z 9 4 13 74 541 

Total # 1094 917 1634 1837 1575 1605 5949 2006 975 1299 18891 
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back vowels or the semivowels, j\j or / w/. The spectra of the remaining five clusters 

appear to be more associated with consonants. The peak distribution of energy in 

these clusters ranges from low frequency, common to the nasal consonants, to high 

frequency, common to the strident fricatives. 

The fact that the distributions in each cluster contain a significant amount of 

phonetic regularity is illustrated in Table 4.3, where the cluster distributions have 

been normalized relative to the number of tokens in each cluster. For example, this 

table indicates that 35% of the tokens in cluster 1 are associated with [iy], while 16% 

may be associated with \l\. Close examination of this table reveals that there is a 

large amount of phonetic regularity captured by these particular clusters. The first 

five acoustic clusters capture information about general vowel classes. For instance, 

the first cluster tends to contain high front sonorants such as [iy], [y], and [u]. The 

fifth cluster tends to contain back sonorants such as [ow], and [o]. This cluster also 

contains the majority of the lateral consonants as well. 

The remaining five clusters in this example appear to cluster the remainder of 

the consonants. For instance, cluster six is dominated by sonorant consonants such 

as the nasal consonants. Cluster seven appears to be dominated by weak fricatives, 

and silence. Cluster eight contains phones which are associated with a predominance 

of high-frequency energy, such as stop-consonant releases and the aspirants. Finally, 

clusters nine and ten are dominated by the palatal and alveolar strident fricatives, 

respectively. 

In order to help visualize the phonetic structure captured by a particular set 

of acoustic clusters, the phone distributions were themselves used as the basis of a 

hierarchical clustering. For example, the phone distributions for ten clusters are found 

in Table 4.2. The distance between two clusters of phones was defined as the average 

distance between each phone distribution in one cluster and each phone distribution 

in the other cluster. The distance metric used was a Euclidean distance between 

the distributions. The hierarchical structure produced by using the distributions in 
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Figure 4.3: Spectra of ten clusters. 

This figure illustrates the spectra of ten acoustic classes determined with the hierarchical 
clustering procedure. Each spectrum is plotted along a Bark frequency scale. The mean of 
each cluster is plotted between curves that are one standard deviation away from the mean. 
The label on each cluster corresponds to the labels in Tables 4.2 and 4.3. 
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Table 4.3: Distributions for ten clusters (percent normalized by cluster) 

Phone 1 2 3 4 5 6 7 S 9 10 Total # 

I 
U 

5 2 1 1 131 

6 3 1 1 1 176 

iy 35 13 2 3 3 663 

i 16 14 12 2 3 7 1 8 893 

i 9 21 5 5 1 1 500 

ey 8 16 1 2 1 1 334 

? 1 8 3 1 230 

a- 1 1 11 1 4 2 2 401 

r 2 14 9 5 2 2 559 

E 2 7 5 11 1 1 1 408 

as 2 4 6 8 1 1 334 

ay 3 2 4 10 1 1 326 

a 3 13 4 371 

A 4 9 ■ 2 284 

QW 1 3 1 105 

oy 1 1 1 68 

U 1 1 1 1 2 1 112 

u 1 1 1 1 61 

ow 1 2 4 8 1 250 

3 2 2 7 5 11 2 2 502 

0 1 6 11 322 

1 1 1 1 4 20 8 1 586 

w 1 1 7 7 265 

1 6 1 133 
4 

m 1 24 

c 1 1 62 

n 3 1 123 

m 

3 1 132 

1 12 3 1 424 

n 1 16 7 1 735 

V 3 3 1 1 246 

D 1 97 

o 1 94 

3 

b° 

1 42 
3 185 
5 306 

P0 

d° 1 
6 
8 

372 
505 

k" 1 9 555 

t" 12 1 712 

Q 1 17 1 1066 

2 1 1 1 2 3 2 4 358 

b 1 1 2 123 

5 1 1 2 2 4 1 250 

f 1 3 5 2 3 347 

r 1 2 2 2 190 

e 1 1 1 1 119 

& 1 31 

h 1 4 1 1 140 

9 

P 
k 

1 4 1 151 

1 1 1 1 1 1 8 1 308 

1 1 1 1 2 13 5 2 514 

t 1 1 11 17 4 509 

d 1 1 5 6 3 249 

3 
9 
j 
X 

1 1 . 21 
12 1 153 

1 12 3 168 
1 14 2 193 

z 1 1 7 31 541 

s 1 1 1 19 44 828 

Total # 1094 917 1634 1837 | 1575 1605 5949 2006 975 1299 18891 
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Table 4.2 is shown in Figure 4.4. From this figure it is also apparent that the major 

manner groups are being captured by the set of 10 clusters described previously. 

Thus, at low levels in the phonetic structure (which correspond to higher points in 

Figure 4.4) phones with similar features tend to group together, giving rise to classes 

such as high front sonorants, silence, nasal consonants, etc. Note for instance, that 

the alveolar and palatal strident fricatives each form distinct acoustic classes before 

subsequently merging into a single acoustic class. The retroflexed phones merge 

together to form a single class at a relatively low level in the phonetic structure. 

The semivowels /w/ and /l/, as well as syllabic /}/, also form a common group. 

The stop consonants tend to group by manner of articulation. The only exception is 

the /p/ which first groups with the aspirants. This grouping is reasonable since the 

representation used was an average of the entire segment. Thus, the release of the 

/p/ would tend to be dominated by the aspiration. A qualitative analysis of these 

structures, as the number of acoustic clusters increased, showed that after ten clusters 

the hierarchical organization did not change significantly. 

Finally, the phonetic distributions for the clusters obtained from the training data 

were compared to those from a new set of 500 sentences spoken by 100 different talkers. 

The percentage difference for a given cluster and phoneme was, on the average, around 

1%, suggesting that the results did not change significantly. Closer examination 

revealed that the larger differences were mostly due to sparse data. 

On the basis of these investigations, it appeared that by representing each acoustic 

segment with an average cross-section of the mean-rate response, and by clustering 

with a Euclidean distance metric, it was possible to determine a relatively small 

number of acoustic classes which appear to be capturing general manner properties. 

These results provided solid evidence that it was possible to determine a robust 

acoustic description of phonetic events through the use clustering procedures. 

An examination of the distributions in Tables 4.2 and 4.3 indicated that although 

the realization of a phone tended to be distributed into clusters which were acousti- 

cally similar, this was not always the case.  There appeared to be three reasons for 
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Figure 4.4: Phonetic hierarchical structure with ten clusters. 

This figure illustrates the hierarchical structure which results from using the distributions 
in Tables 4.2 as an observation vector for each phone. 

this behavior. First, it became apparent that in some cases, the signal representation 

was not adequate. For instance, an examination of the distributions indicated that 

many of the nasal consonants fell into both an acoustic cluster with a low-frequency 

murmur, as well as a cluster which was predominantly silence. An examination of the 

hierarchical structure indicated that those nasals which fell into the silence class were 

often heavily attenuated so that they were virtually flat in the mean-rate response. 

The utterances used for this work were recorded with a noise-canceling microphone. 

One of the properties of this microphone is to cancel out sounds which do not em- 

anate directly from the mouth. Thus, sounds primarily transmitted through the 

nostrils or through tissue vibration are heavily attenuated. The result is that there 
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is significantly less information in the low-frequency channels than would be present 

with different recording mechanisms. In terms of the acoustic clustering, this phe- 

nomenon suggested that an alternative signal representation, with larger gains in the 

low-frequency channels, might improve the clustering results in these cases. 

A second reason for differences in the distributions could be attributed to the 

Euclidean distance metric which was used to perform the clustering. An example 

of this type of behavior is found in the distributions of the [y], or [i], where a 

consistent fraction fell into acoustic clusters dominated by silence or consonants. An 

examination of the hierarchical structure indicated that in these cases, the gain was 

either very large or very small. Since this type of effect would reduce the purity of the 

mapping between the underlying phonemes and the acoustic classes, an alternative 

distance metric was explored which subtracted the mean value of each spectrum 

before computing the Euclidean distance. This distance metric can still be shown to 

be stepwise optimal, so that the hierarchical clustering procedure remained the same. 

When the zero-mean distance metric was substituted for the Euclidean metric it 

was found that the acoustic classes had a smaller amount of distortion. When com- 

bined with the increased gain in the low-frequency channels of the auditory model, an 

analysis of the acoustic structure showed that there were two additional classes which 

seemed quite robust. The first additional cluster contained strong low-frequency en- 

ergy, while the second contained energy in the mid-frequency range. These spectra 

are illustrated in Figure 4.5. In comparing these clusters to those determined with the 

Euclidean distance metric, which were shown in Figure 4.3, the standard deviation 

appears to be consistently smaller for a majority of clusters, even though the average 

spectral shapes are often very similar. The normalized distributions of these twelve 

clusters are shown in Table 4.4. By comparing these distributions with those of Ta- 

ble 4.2 it can be seen that the phone distributions are often more tightly centered 

around acoustically similar clusters. For instance, 74% of the [iy] tokens fell into 

cluster 1, and 12% fell into cluster 2, using, the zero-mean distance metric, compared 

to 57% and 18% respectively for the Euclidean distance metric. 
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Figure 4.5: Spectra of twelve clusters 
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This figure illustrates the spectra of twelve acoustic classes determined with the hierarchical 
clustering procedure and the zero-mean distance metric. Each spectrum is plotted along a 
Bark frequency scale. The mean of each cluster is surrounded by one standard deviation. 
The label on each cluster corresponds to the labels in Table 4.4. 

77 



CHAPTER 4.   ACOUSTIC CLASSIFICATION 

Table 4.4: Distributions for twelve clusters (percent normalized by phone). 

Phone 1 2 3 4 5 6 7 8 9 10 11 12 Total # 

& 74 12 1 4 4 2 1 670 

I 53 20 3 6 14 1 2 1 137 

U 35 34 10 1 12 6 3 178 

e^ 35 43 3 1 1 6 4 3 2 1 334 

i 24 46 4 12 2 7 2 2 1 501 

f 19 39 4 12 1 12 6 6 2 1 896 

E 3 42 21 17 3 3 1 6 2 1 412 

ze 1 33 44 4 1 1 2 7 5 1 336 

A 6 46 27 12 3 1 3 1 2S4 

a? 9 14 62 4 2 2 2 2 4 323 

aw 1 74 6 10 5 3 2 - 109 

a 1 69 13 12 1 1 2 1 365 

3- 2 24 i 51 3 3 3 3 2 410 

r 1 14 10 59 6 ' 5 1 1 3 568 

3- 1 13 6 75 2 , 1 2 225 

3 1 12 16 30 22 10 3 4 1 508 

0? 8 17 17 22 25 9 2 2 65 

u 3 14 1 26 21 28 5 2 110 

u 3 30 7 21 25 11 3 61 

a* 5 16 15 52 6 3 2 248 

0 34 6 56 1 1 1 1 1 321 

1 2 1 83 11 1 3 1 132 

i 1 2 5 6 51 27 4 2 582 

w 1 1 6 49 34 6 3 270 

m 4 46 38 12 24 

n 2 4 1 2 2 34 34 21 1 123 

m 1 1 1 1 1 30 49 15 1 429 

q 3 1 2 21 51 21 1 140 

n 1 1 18 54 24 1 731 

7 13 5 2 18 35 19 6 2 62 

J 
67 33 3 

1 3 78 16 1 93 

9° 1 ■ 1 1 17 79 1 1 183 
13 83 3 490 

P 4 89 1 5 1 707 

b° 1 9 90 1 289 

k° 6 92 1 1 534 

n 1 2 94 2 1 101 

0 

2 98 356 
1 98 1 1060 

V 2 1 1 1 9 14 59 3 8 237 

8 1 2 3 11 59 8 15 246 

e 4 54 4 34 2 3 114 

2 4 11 13 1 4 2 7 45 9 5 357 

? 9 2 9 7 43 14 14 2 44 

r 8 10 2 2 22 42 10 4 1 189 

f 1 42 14 40 1 1 339 

fi 6 3 6 3 12 22 25 22 32 

b 3 2 6 1 2 1 2 34 30 19 1 112 

p 1 S 28 43 19 1 307 

h 1 1 5 2 27 40 24 140 

k 6 1 18 43 27 4 2 513 

g 1 1 11 1 1 1 12 43 2S 1 149 

d 1 1 2 14 17 54 5 6 242 

c 1 1 10 18 53 11 6 494 

5 1 1 1 7 2 16 68 6 186 

J 2 2 18 69 9 171 

5 1 - 5 4 16 69 5 150 

2 5 5 24 52 14 21 

z 1 6 19 13 61 535 

s 1 5 1 12 16 64 840 

Total# . 1186 1700 1500 1483 1230 1084 1375 5257 978 1351 665 979 18788 
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A third reason for smearing in the distributions was due to blurring of dynamic 

behavior in an acoustic segment caused by representing each segment by a single 

average spectrum. This effect can be seen in Table 4.2 by comparing the diphthongs 

jo?I or 1$I to vowels such as /a/ or /o/. The latter two vowels have more tokens 

centered in a single acoustic cluster than do the diphthongs. The diphthongs tend 

to have more tokens in clusters 1 or 2, which tend to contain more of the front 

vowels. This point can be seen very clearly by noting that the vowels /a/ and /o/ 

have no tokens in clusters 1 or 2, whereas the two diphthongs have 15% and 11% of 

their tokens in these two clusters. This trend is even more pronounced in Table 4.4. 

This observation would seem to indicate that the information in the diphthongs was 

being blurred by the spectral averaging. As was mentioned earlier, this phenomenon 

motivated a more sophisticated clustering procedure which will be described later in 

the following section. 

The final source of change in the distributions was not due to the signal repre- 

sentation, nor the distance metric, but appeared to be caused by basic regularities in 

the acoustic realization of a phone. The phone [5] for example, appeared to fall into 

several classes, one of which was dominated by a low-frequency energy, while another 

was dominated by a high-frequency energy. This observation motivated an investi- 

gation into determining acoustic regularities of individualphonemes. The results of 

these investigations are reported in the following section. 

4.3     Finding Regularities in the Realization of Phonemes 

4.3.1     Weak Voiced Fricatives 

For reasons just mentioned, the first phoneme to be examined in more detail was 

/5/. In order to obtain as much as data as possible, the two 100 talker datasets 

were combined to form a single dataset. There were 473 instances of [5] in this larger 

dataset. The clustering procedures incorporated in the last section were essentially 
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Table 4.5: Summary of distributions of preceding contexts for /5/. 

Preceding 
Context 

5-1 
(% of total) 

5-2 
(% of total) 

Total 
(# of tokens) 

+obstruent 
+sonorant 

81 
25 

19 
75 

286 
187 

duplicated on these data. An average mean-rate response of aligned dendrogram 

segments was used for the acoustic representation. The pre-clustering algorithm gen- 

erated a set of 34 seed clusters with more than 2 members. "The hierarchical clustering 

procedure was then applied to these seed clusters. 

An analysis of the results indicated that there were two types of /8/'s, which 

were acoustically quite distinct, as illustrated in Figure 4.6 along with spectrograms 

of prototypical utterances. An examination of the contexts in each cluster indicated 

that the following context did not significantly affect the nature of the phoneme. In 

American English, the phoneme /5/ is nearly always syllable initial, and is therefore 

nearly always followed by a vowel. The nature of the vowel did not appear to affect 

the realization of the phoneme. The preceding context appeared to play a more 

important role however. In particular, when the phoneme was preceded by silence 

or an obstruent, it was classified into cluster '5-1' 81% of the time. However, if the 

phoneme was preceded by a sonorant, it was classified into cluster '5-2' 75% of the 

time. A more detailed summary is found in Table 4.5. 

When this process was repeated on 437 /v/'s using an average spectral shape, two 

distinct acoustic classes were observed. As shown in Figure 4.7, the top two clusters 

had similar spectral characteristics as those found for /Ö/. Thus, it would appear 

that the two weak voiced fricatives have similar systematic patterns of behavior. 
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Figure 4.6: Spectra of /6/ clusters. 

This figure illustrates the top two acoustic clusters associated with the /5/. Each spec- 
trum is plotted along a Bark frequency scale. The mean of each cluster is surrounded by 
one standard deviation. The label on each cluster corresponds to the labels in Table 4.5. 
Spectrograms of prototypical contexts are illustrated on the right. 
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Figure 4.7: Spectra of /v/ clusters. 

This figure illustrates the top two acoustic clusters associated with /v/. Each spectrum 
is plotted along a Bark frequency scale. The mean of each cluster is surrounded by one 
standard deviation. These clusters have shapes that are very similar to the two clusters 

found"for /5/, shown in Figure 4.6. 
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4.3.2    Velar Stop Consonants 

The next phoneme to be examined in more detail was /k/. This phoneme was 

investigated because of a belief held by many phoneticians that there are two allo- 

phones of this consonant, one corresponding to a 'front' /k/, the other corresponding 

to a 'back' /k/. The goal of the study was determine if it was possible to motivate 

these two allophones from an analysis of acoustic regularity of the release of the stop 

consonant. In fact, the results of this study indicated that these two phenomena 

were readily found in the data. In addition, there was evidence for a third systematic 

regularity as well. The investigation' is described in more detail in the remainder of 

this section. 

In order to eliminate the influence of the following vowel during the aspiration 

portion of the stop release, the analysis was focused around the release of the stop. 

This was achieved by computing the average mean-rate response from the shortest 

acoustic segment located at the release of the stop. The average duration of such 

segments was less than 24 ms, compared to an average voice onset time of over 57 ms 

for /k/. Figure 4.S illustrates the fraction of time taken by the acoustic sub-segments 

compared to the actual voice onset time of the phonetic token. Note that the set of 

points forming a diagonal in the scatter plot are cases where there was but a single 

acoustic segment corresponding to the release of the /k/. 

In the 1000-utterance dataset, there were 952 [k] tokens which had a release. In 

the same manner described previously, the pre-clustering algorithm was used to select 

a set of seed clusters. In this case, when a threshold was selected to maximize the 

number of clusters with more than 2 members, 77 seed clusters were generated. The 

hierarchical clustering procedure was then run on these clusters. 

From these classifications it became apparent that the spectral cross-section sam- 

pled at the release varied substantially, and that there were at least three robust 

acoustic clusters present in the data. These clusters are illustrated in Figure 4.9, 

along with spectrograms of prototypical utterances.   An analysis of the immediate 
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Figure 4.8: Segment duration comparison for /k/. 

This figure presents a scatter plot comparing the voice onset time (horizontal axis) to the 
duration of the acoustic segment chosen to represent the burst release. All durations are in 

ms. 

phonetic context indicated that the preceding context was nearly always either a clo- 

sure or a silence (there were 3 instances of a preceding /rj/, and one instance of a 

preceding /a/). Thus, the investigation of the role-of context focused on the following 

phone. The distributions of the following contexts have been summarized in Table 4.6 

for the three clusters illustrated in Figure 4.9. For example, when a /k/ was followed 

by the vowel /iy/, all of the spectral cross-sections taken from the acoustic segment 

nearest the release fell into class 'k-1.' 

The distributions in Table 4.6 indicate that the following context played a sig- 

nificant role in the acoustic realization of the release. In particular, as in previous 

cases, there appeared to be major groups with similar distributional properties. The 

major classes tended to cluster together in terms of front vowels, unrounded back 

vowels, and rounded back vowels, although /u/ and /u/ do not fit this last trend. 
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Figure 4.9: Spectra of /k/ clusters. 

This figure illustrates the top three acoustic clusters associated with the release of the 
/k/. Each spectrum is plotted along a Bark frequency scale. The mean of each cluster is 
surrounded by one standard deviation. The label on each cluster corresponds to the labels 
in Table 4.6. Spectrograms of prototypical contexts are illustrated on the right. 
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However, there is not much data available for these two vowels, and either of them 

could have been partially fronted. A summary of distributions grouped according to 

major phonetic features may be found in Table 4.7. For example, this table illustrates 

that when a /k/ was followed by a front vowel the acoustic segment associated with 

the release of the stop fell into class 'k-1' 88% of the time. Similarly, when a /k/ was 

followed by a retroflexed sonorant, the acoustic segment was classified into cluster 

'k-2' 67% of the time. 

As a means of checking that the spectral shape was not being influenced by the 

presence of aspiration in the release, of the /k/, and to verify that the number of 

clusters was stable, a similar clustering experiment was performed on 294 /g/ tokens 

from the same set of data. The results of the hierarchical clustering experiment 

indicated that there were also three robust acoustic clusters with important contextual 

dependencies. The three top /g/ spectral clusters are shown in Figure 4.10. These 

spectra are extremely similar to those determined for /k/. Thus, in a fashion similar 

to the weak voiced fricatives, it would appear that the velar stop consonants have 

similar systematic patterns of behavior. 

4.3.3    Modeling Time-Varying Changes 

As was mentioned previously, one of the limitations of the acoustic representation 

used for the classification analysis is that a phone is mapped to a single acoustic 

segment. As a result, the time-varying characteristics cannot be adequately captured. 

In light of these limitations, some preliminary studies of the vowel /ae/ were made, 

except that the vowel was represented as a sequence of two acoustic segments, each 

represented by an average spectral vector. A distance between two sounds was the 

combined distance between each of the respective subsegments. In the 1000 utterance 

dataset described previously, there were 571 examples of [ae]. The pre-clustering 

procedure generated a set of 48 seed clusters. The hierarchical structure produced 

two clusters which appeared to be significantly different in the preliminary portion of 

86 



CHAPTER 4.   ACOUSTIC CLASSIFICATION 

Table 4.6: Distributions of some following contexts for /k/. 

Following k-1 k-2 k-3 Total 

Context (%) (%) (%) (#) 

i* 100 24 

y 100 22 
ae 98 2 55 

ey 96 4 26 
i 88 12 17 
s 88 12 25 
QW 87 13 23 
I 72 18 58 
u 67 33 24 
a^ 33 66 6 
a 23 61 16 51 
A 22 76 2 58 
& 19 78 3 27 
3 14 79 7 29 
3- 8 85 7 13 
U 17 66 17 6 
ow 12 65 23 26 
U 27 64 9 11 
r 58 42 55 
1 2 48 50 54 
0 3 44 53. 45 
1 9 38 53 70 
w 25 75 53 
0? 22 78 9 
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Figure 4.10: Spectra of /g/ clusters. 

This figure illustrates the top three acoustic clusters associated with the release of the 
/g/. Each spectrum is plotted along a Bark frequency scale. The mean of each cluster is 
surrounded by one standard deviation. These clusters have very similar shapes to the three 
clusters found for /k/, shown in Figure 4.9. 
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Table 4.7: Summary of distributions of following contexts for /k/. 

Following k-1 k-2 k-3 Total 

Context (% of total) (% of total) (% of total) (# of tokens) 

+front 88 12 274 

-fback, -round 21 71 8 154 

+back, -(-round 5 42 53 150 

+retroflex 6 67 26 95 

+lateral 6 43 52 124 

-ffricative 27 69 4 97 

Table 4.S: Summary of distributions of following contexts for /ae/. 

Following 
Context 

ae-1 
(% of total) 

ae-2 
(% of total) 

Total 
(# of tokens) 

+nasal 
-nasal 

30 
69 

70 
31 

205 
351 

the vowel. A plot of the two distributions is shown in Figure 4.11. From this figure 

it is apparent that one of the most noticeable differences between the two clusters is 

that the first portion of 'as-2' has a higher second formant than the first portion of 

'ae-1.' An examination of the immediate phonetic contexts of each cluster indicated 

a strong tendency of the 'ae-2' to precede a nasal consonant. As shown in Table 4.8, 

when a vowel was followed by a nasal, it fell into the 'ae-2' category 70% of the time, 

while when a vowel was not followed by a nasal, it fell into the 'ae-1' category 69% 

of the time. This result seems to provide additional acoustic support for the raised 

/ae/ phenomenon discussed in the literature [66]. 
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Figure 4.11: Spectra of /ae/ clusters. 

This figure illustrates the top two acoustic clusters associated with the vowel /as/. Each 
cluster corresponds to a left spectra and a right spectra. Each spectrum is plotted along 
a Bark frequency scale. The mean of each cluster is surrounded by one standard devia- 
tion. The label on each cluster corresponds to the labels in Table 4.8. Spectrograms of 
prototypical contexts are illustrated on the right. 
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4.4     Chapter Summary 

This chapter investigated procedures to automatically determine acoustic labels 

from a large body of training data. Since it was not feasible to attempt an ex- 

haustive study due to limitations of the signal representation and training data, two 

smaller studies were made. The first study attempted to determine if it was possible 

to uncover major sources of acoustic regularity that capture basic properties of all 

phonemes. This was accomplished by applying a hierarchical clustering procedure to 

data from all phonemes, using the mean-rate response as the basis of the signal rep- 

resentation. The results of this study indicate that it is possible to assign an acoustic 

segment to one of a small set of acoustic categories, each having a meaningful phonetic 

distribution. 

The second study attempted to demonstrate that it was possible to capture im- 

portant context dependencies of individual phonemes. This was done by applying a 

hierarchical clustering procedure to the weak voiced fricatives, /Ö/ and /v/, and the 

velar stop consonants, /k/ and /g/. A slightly modified version of this procedure 

was also applied to /ae/. The results of this study indicate that it is possible to de- 

termine a finite number of regular acoustic forms which capture consistent contextual 

dependencies. Additionally, there is evidence that these regularities can generalize 

across sets of phonemes with similar phonetic features. 
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Signal Representation Refinements 

This chapter presents the results of two investigations which attempted to improve 

the characteristics of the mean-rate response. The first study attempted to enhance 

the temporal and spectral properties of the mean-rate response outputs by sampling 

the outputs of the auditory model pulse-synchronously. The second study performed 

a dimensional analysis of the mean-rate response outputs in order to determine if 

a more compact representation of the outputs could be found. These studies were 

motivated by observed inadequacies of the mean-rate response for the tasks of acoustic 

segmentation and classification, which were reported previously. 

5.1     Limitations of the Mean-Rate Response 

The mean-rate response values depend upon the amount of post smoothing or 

averaging performed in each channel of the auditory model. Unfortunately there are 

practical reasons why no single amount of smoothing is satisfactory for all speech 

sounds. If the channel- outputs are not smoothed enough then a significant amount 

of ripple will be present during voiced periods. If a spectral representation is created 

by downsampling these smoothed outputs at fixed time intervals, then the resulting 

spectrum will also exhibit these temporal fluctuations. This phenomenon is known as 

'pitch ripple,' and can be clearly seen in the last syllable in Figure 2.3. Pitch ripple 

causes difficulty for algorithms attempting to segment the speech signal, because there 

can be substantial differences in the values of nearby spectra. If the channel outputs 
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are smoothed excessively however, the temporal resolution necessary to resolve short- 

duration events will be greatly reduced, thus making it difficult to automatically 

locate many short-duration events, such as stop bursts. 

The trade-off between too much and too little temporal resolution is not unique 

to the mean-rate response, but is a classic problem faced by most spectral represen- 

tations. Typically, the parameters of most representations are designed to minimize 

the amount of pitch ripple present in the spectrum [23,94,98]. This resolution of the 

problem seems rather unsatisfactory however, especially since it appears that the un- 

smoothed auditory outputs contain a"tremendous amount of information about the 

temporal structure of the speech signal. As illustrated in Figure 5.1, all channels 

respond to sudden events, such as the release of a stop consonant, or the onset of 

a glottal pulse. If the locations of these events were known, it would be possible to 

sample the outputs synchronous to these events, instead of the fixed-rate sampling 

procedure normally used. Good temporal resolution could be maintained, since less 

smoothing would be required, yet the problem with pitch ripple would be avoided 

since spectra could be sampled at a consistent point in each pitch period. Different 

variations of this idea (commonly known as pitch-synchronous analysis) have been 

explored by many investigators [47,50,80,87]. The approach described here is slightly 

more general in that a pulse-synchronous analysis is advocated, which would be syn- 

chronous to all events in the speech waveform. This representation would also be 

computed solely from information provided by an auditory model. 

The following section presents a three stage procedure which was developed for 

pulse-synchronous sampling of the second stage outputs. The first part of this pro- 

cedure produces a signal containing useful information about the excitation in the 

speech waveform. The method for obtaining this signal is a slightly modified ver- 

sion of one proposed by Seneff for extracting periodic information from speech [103]. 

The second stage of the procedure derives sampling points from the excitation signal, 

which are used in the third and final stage to produce a pulse-synchronous spectral 

representation. 
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Transcription 

Waveform 

Auditory    Outputs 

Output  Sum 

Aligned  Output  Sum 

N \ % k \i N \ h k \ k \hx __ 
0.2 0.4 

Time (s) ^ 

Figure 5.1: Channel sum waveforms. 

This figure provides a magnified view of the second stage outputs for the second syllable of 
the word 'ambassador.' From the top the displays are (1) aligned phonetic transcription, 
(2) speech waveform, (3) second stage outputs, (4) a sum across all channels, and (5) a sum 
across all aligned channels (see text). 
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5.2     Synchronous Analysis of Speech 

5.2.1     The Channel Sum Waveform 

The middle display of Figure 5.1 illustrates the fact that all channels respond to 

sudden events occurring in the speech signal. In this figure, there is clear response to 

the release of the stop consonant and to all points of the onset of glottal closure. In 

voiced regions the responses to excitation are most clearly located in channels which 

are not centered over any vocal-tract resonance. It is possible to reduce the effect of 

the temporal fluctuations due to excitation by smoothing the outputs in each channel 

in time. Alternatively, it is possible to enhance these variations by summing the 

outputs across all channels. This effect has been noted previously by other researchers 

such as Searle et al. [100], and Seneff [103]. An example of the channel sum waveform 

is shown in the display immediately below the auditory outputs in Figure 5.1. This 

waveform exhibits strong peaks in response to sudden events occurring in the speech 

waveform. 

Due to the different filtering performed on each channel there is a small delay 

between their respective response times. This variation in delay, which is on the 

order of 1.2 ms over the course of the 40 channels, is illustrated in the top panel 

of Figure 5.2, which shows the response of the auditory model to an impulse. By 

assuming a simple linear relationship among the delays of the different channels, 

it is possible to produce a reasonable alignment of channel outputs. As shown in 

the bottom panel of Figure 5.1, this alignment results in a channel sum waveform 

with sharper onsets, and larger peak-to-valley ratios than a sum of the unaligned 

waveforms. The net result is that the aligned sum is capable of distinguishing events 

in the auditory outputs with higher resolution than the sum waveform produced from 

unaligned outputs. 

95 



CHAPTER 5.   SIGNAL REPRESENTATION REFINEMENTS 

o c 
<u 
3 

u 

pa 

c 
3 
C7 
1) 

0.0050 

Time (s) ^ 
0.0100 

Figure 5.2: Impulse response of the auditory model. 

This figure shows the response of the second stage outputs to an impulse. The top display 
shows the delay among the different channels when there is no alignment. The bottom 
display shows the delay when a linear offset of 0.03 ms/channel is incorporated. 
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5.2.2     Determining Event Locations 

One of the most critical steps in the synchronous analysis procedure involves 

determining where significant events occur in the speech waveform. Currently, events 

are determined from the channel sum waveform as illustrated in Figure 5.3. First, 

the channel sum waveform is differentiated and smoothed by convolution with a 

derivative of a Gaussian filter (a = 3 ms). The amount of smoothing determines 

the upper resolution of a fundamental frequency, and determines how sensitive the 

algorithm is to spurious events. 

Local maxima in the derivative of the channel sum waveform correspond to points 

of maximal onset. As illustrated in Figure 5.4, the locations of these onsets are not 

useful places to sample the auditory outputs since all channels tend to be responding 

strongly at these points. If there is no vocal-tract resonance in a given channel, 

however, the channel output will decay according to the bandwidth of the channel 

itself. Conversely, if the channel is centered over a vocal-tract resonance having 

a smaller bandwidth than the channel, then the channel outputs will decay at a 

slower rate. By delaying the sampling, the resulting spectral shape will be superior 

than that obtained by sampling at the point of maximum onset. Currently, the 

outputs are sampled at the point of maximum rate of offset of the channel outputs. 

This location appears to correspond to a point where weaker channel outputs have 

decayed substantially, whereas channels centered over significant resonances have not 

yet decayed. This point serves to illustrate another property of the synchronous 

response: since it is sampled in a consistent manner, it produces a more consistent 

spectral representation. 

5.2.3     Producing the Synchronous Response 

A fixed-rate analysis is computed by low-pass filtering the auditory outputs and 

sampling the filtered outputs at fixed time intervals.  A benefit of this procedure is 
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1. Align and sum auditory outputs. 

2. Differentiate sum. 

3. Sample auditory outputs at derivative minima. 
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Figure 5.3: Computing event locations. 

This figure illustrates the three steps necessary to compute the location of important sam- 
pling points in the auditory outputs. These data are taken from the middle syllable of the 
word 'ambassador.' First, the aligned channel sum waveform is computed. Second, the 
derivative of the sum waveform is computed. Third, sample points are located at local 
minima in the derivative. 
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Figure 5.4: Determining event locations. 

This figure illustrates the importance of sampling the filtered auditory outputs at the correct 
location. The example is taken from a synthetic stimuli made up of two decaying tones 
(resonances at 1 and 2 kHz, bandwidth of 70 Hz). If the outputs are sampled at the point 
of maximum onset in the channel sum waveform (A), the resulting spectral cross section 
does not adequately resolve the two resonance frequencies. If the outputs are sampled at 
a later time, such as at the point of maximum offset (B), then the spectral resolution is 

significantly better. 
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that it is conceptually straightforward; however, it has the inherent temporal resolu- 

tion problem which was discussed previously. This section describes an alternative 

procedure which samples the second stage outputs of the auditory model synchronous 

to landmarks found in the channel sum waveform. Since there are many sounds, such 

as silence, frication, or aspiration, for which no salient events occur, the goal of the 

synchronous analysis is to sample the outputs at regular intervals (every 5 ms), fo- 

cusing on important landmarks when they exist in the speech signal. 

The pulse-synchronous procedure is illustrated in Figure 5.5. In this approach, the 

auditory outputs are again smoothed and sampled at a fixed analysis rate. However, 

within each analysis frame, the sampling is made at the location of the most significant 

event which has occurred in the channel sum waveform during the frame interval. In 

voiced regions, the event locations should correspond to onsets of glottal closure. 

Events should also be located at the release of bursts. In voiceless regions however, 

they occur somewhat randomly. As shown in Figure 5.5, since the sampling is made at 

events, significantly less smoothing of the original auditory outputs is required. This 

will produce' a spectral representation with temporal properties superior to those 

found in the mean-rate response. Comparing Figures 2.3 and 5.5, it is clear that 

the pulse-synchronous response has sharper onsets and offsets than the mean-rate 

response, which should make it easier to locate significant acoustic events in the 

speech signal. Additionally, there is much less pitch ripple in the voiced regions of 

the utterance in the synchronous response. Further, by sampling at a consistent 

point in the speech signal, the spectral characteristics are more consistent than for 

the mean-rate response. The superior characteristics of the synchronous response 

are clearly illustrated in Figure 5.6 which shows the response to an utterance with a 

fundamental frequency as low as 25 Hz. 

Since the pulse-synchronous representation of the speech signal appears to be po- 

tentially superior to the mean-rate response outputs, a more quantitative comparison 

was made. While a detailed investigation is beyond the scope of this thesis, some 

preliminary experiments have been made for the task of acoustic segmentation. As 
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Figure 5.5: Computation involved in computing a synchronous response. 

The three stages necessary in computing a pulse-synchronous response: (1) low-pass filter 
auditory outputs, (2) determine sampling points, and (3) sample outputs at a fixed analysis- 
rate, sampling at events wherever they exist. 
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Figure 5.6: Comparison of mean-rate spectra for the word 'time.' 

The top display contains the speech waveform, the middle display contains the mean-rate 
response, and the bottom display contains the pulse-synchronous response. 
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was reported in Chapter 3, an analysis of the dendrogram indicated that many times 

there was no acoustic event associated with the release of a stop consonant. Figure 5.7 

shows the fraction of time that there was no event corresponding to a release of a 

stop consonant on the aligned dendrogram path. In many cases, the lack of an event 

was due to a lack of temporal resolution in the mean-rate response representation. 

As may be seen from the figure, substituting the pulse-synchronous response more 

than halved the number of cases where no release was found. This result provides 

evidence that the pulse-synchronous representation might be useful for the task of 

acoustic segmentation. 

50 

40   - 

30 
S-i 
O 

.2    20   1 
■4—i 

<D 
T—< 

Q   10 

o 

II   Mean-rate Response 
B   Synchronous Response 

b d g p t k 

Stop Release 

Figure 5.7: Stop release deletion rate. 

This figure compares the dendrogram deletion error of the release of the six stop consonants 
using two different spectral representation. The first was the mean-rate response, while the 
second was the pulse-synchronous response. 
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5.3     Extracting the Fundamental Frequency 

Since the channel sum waveform enhances the excitation characteristics of the 

speech signal relative to vocal-tract specific information, it would appear to be a useful 

representation for extracting the fundamental frequency of voicing. Such a measure of 

information would complement any spectral representation of the speech signal, and 

could prove useful for prosodic analyses of speech. Knowledge of the fundamental 

frequency would also be a valuable source of constraint in the synchronous spectral 

analysis procedure since it provides a mechanism for eliminating spurious events. The 

goal of this section is to illustrate how the fundamental frequency could be extracted 

from the channel sum waveform, and to discuss some interesting characteristics of the 

channel sum waveform. 

Several different procedures have been developed for extracting information about 

the fundamental frequency [25,43,82,84,93,101,108]. Two of the more common time- 

domain representations are the autocorrelation function and average magnitude dif- 

ference function (AMDF). Both of these functions compare a windowed portion of the 

waveform with another windowed portion delayed by a time period r. The period of 

the fundamental frequency is determined by finding the r with the maximum amount 

of similarity between the two waveform portions. 

In the AMDF computation, 

AMDF{T) = E\x(t)-x(t-r)\,        Tx<t<T2 

Periodic sounds will produce a null in the AMDF function at the appropriate delay as 

illustrated in Figure 5.8 for a pure tone. In practice, the fundamental period usually 

corresponds to the deepest null in the AMDF function. 

Figure 5.9 is an example of the fundamental frequency determined from the chan- 

nel sum waveform for the word 'ambassador.' In this case, the fundamental frequency 

was determined based on information provided by an AMDF function, although the 
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Figure 5.8: Determining periodicities with an AMDF. 

This figure illustrates the use of the AMDF function for extracting the fundamental fre- 
quency. The top display contains the waveform corresponding to a 20 ms tone with a 
frequency of 200 Hz. The middle display shows the corresponding channel sum waveform. 
The bottom display shows the AMDF function computed between the two markers shown 
in the middle display. This function shows nulls at multiples of 5 ms. 

channel sum waveform could be used as the input to any pitch-detection algorithm. 

It is interesting to note that the channel sum waveform appears to be quite robust 

in the presence of noise. Figure 5.9 shows how fundamental frequency information in 

the channel sum waveform is degraded in the presence of a 0 dB signal-to-noise ra- 

tio. The fundamental frequency measure appears to be quite robust, especially when 

compared to the Gold-Rabiner algorithm [43]. 
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Figure 5.9: Fundamental frequency extraction in the presence of noise. 

This figure illustrates the potential robustness of information in the channel sum waveform 
in the presence of noise for the word 'ambassador,' spoken by a male talker. From the 
top the displays are (1) the aligned phonetic transcription, (2) the fundamental frequency 
extracted from the channel sum waveform using an AMDF function, (3) the same procedure 
with 0 dB S/N, (4) the fundamental frequency extracted by the Gold-Rabiner procedure 
[43], and (5) with 0 dB S/N. 
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5.4     Dimensional Analysis of the Mean-rate Response 

If the instantaneous outputs of the auditory model are considered to be a point 

in a multi-dimensional space, where the dimensionality is equal to the number of 

channels, then a time sequence of such points corresponds to a trajectory through 

this space. Previous studies have shown that the space traversed by speech spectra 

is highly correlated in both frequency and time, and that it is possible to reduce the 

. the number of dimensions used to represent the spectra through the application of 

principal component analysis [74,90,121]. 

Principal component analysis is a statistical procedure which finds an efficient 

representation of a set of correlated data [55]. Geometrically, this procedure may be 

viewed as a rotation of the original coordinate system to one where the axes represent 

dimensions with maximum variability. This representation usually allows for a simpler 

description of the data covariance structure. 

The principal components themselves are orthogonal linear combinations of the 

original dimensions computed by solving for the eigenvalues of the covariance matrix. 

The first m components are the eigenvectors corresponding to the first m eigenvalues. 

The components are optimal in the sense that a fixed number of dimensions will 

explain a maximum amount of the total variance in the original space, and will 

regenerate the original data with minimum least-square error [55]. 

Principal component analysis is relevant to speech analysis for several reasons. 

By reducing the number of dimensions needed to represent the speech signal, speech 

can be stored and transmitted more efficiently. This concept has been the subject 

of several investigations of speech coding [63,121]. If we assume that noise is equally 

distributed throughout the original subspace, then this kind of analysis procedure will 

also enhance the signal-to-noise ratio since the majority of the variance is captured 

in a fewer number of dimensions. 

Another benefit of using a subset of the principal components, as was alluded to 
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earlier, is to get a better understanding of the underlying structure of the speech 

signal. On a study of Dutch vowels, Klein et al. found that there was a good match 

between the first few principal components and the perceptual space [89,90,92]. 

The most relevant aspect of the use of principal component analysis for this work 

concerns the issue of modeling the covariance structure of speech sounds. In the 

previous chapters, procedures were described for segmenting the speech signal, and 

for organizing these acoustic segments into acoustic classes. In all of these procedures, 

the concept of acoustic distance is extremely important. If the speech signal can be 

considered to traverse a space defined by the outputs of the auditory model, then it 

will be necessary to compute distances between points within this space. Any distance 

metric would benefit from incorporating knowledge about the covariance structure of 

such a space. Principal component analysis is important because it considerably 

simplifies the amount of effort needed to model this covariance structure. There 

are two reasons for this simplification. First, by reducing the number of dimensions 

required to represent the signal, fewer data are required to model the covariance 

structure. Second, because the eigenvectors are orthogonal, the new dimensions are 

much less correlated than the original dimensions. Thus, it might prove reasonable to 

ignore inter-dimensional correlations and assume that each dimension is statistically 

independent from all other dimensions. This is the assumption of any metric which 

uses a simple Euclidean, or weighted Euclidean, computation [113]. Clearly, the 

smaller the correlation between the different dimensions, the more accurate such 

assumptions should be. 

The following sections analyze the characteristics of the outputs of the auditory 

model used for all speech analysis. Subsequently, a principal component analysis is 

performed in order to rotate as much of the information as possible onto a set of 

orthogonal coordinates. 

108 



CHAPTER 5.   SIGNAL REPRESENTATION REFINEMENTS 

5.4.1     Statistical Analysis 

The investigation into the statistical properties of the mean-rate response was 

based on a study of 500 sentences of the TIMIT database, totalling approximately 25 

minutes of speech. Figure 5.10 shows a summary of the amplitude distributions across 

all 40 channels. From this figure it is clear that the distributions are highly skewed 

towards a value of zero, irrespective of whether or not regions which correspond 

to silence are included in the statistics. This property is probably a result of the 

nonlinearities present in the transduction stage of the auditory model which attenuate 

low amplitude sounds in any channel. This effect is seen clearly in the lower frequency 

channels during the /s/ in Figure 2.3. Figure 5.10 also illustrates that data are 

distributed in a similar manner in the different channels. 

In addition to individual channel statistics, general measures of correlation were 

also made by computing a 40x40 dimensional correlation matrix for each of the 100 

speakers in the dataset. The distributions of the off-diagonal correlations from the 

100 matrices are shown in Figure 5.11. The average amount of off-diagonal correlation 

among the channel outputs is 0.6, which indicated that many of the channels were 

highly correlated. A closer examination of the correlation distributions was performed 

by measuring the average correlation, C, between channels separated by a constant, 

k. Specifically, 

C(k) = E(Pij8(\i-j-k\) 

where p„ is the correlation coefficient between the ith and jth channels and, 

The average was computed using coefficients from all 100 matrices. A plot of C, shown 

in Figure 5.12, indicates that the auditory outputs are most correlated in adjacent 

channels. This result was also established by Li et al. using contour plots [74]. 
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Figure 5.10: Distribution of speech in the auditory channels. 

This figure shows the distribution of the mean-rate response outputs in the 40 channels 
of the auditory model. Data were collected from 500 sentences from the TIMIT database. 
Channel 0 corresponds to the lowest frequency channel. 
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Figure 5.11: Histogram of the correlation among different channels. 

This figure shows a histogram of the off-diagonal correlation coefficients from the 100 speaker 

correlation matrices. 
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Figure 5.12: Average correlation versus channel separation. 

This figure shows the average amount of correlation between channels plotted as a function 
of the frequency difference between channels. 

5.4.2     Stability of Correlation Estimates 

Since neighboring channels were highly correlated, on average, some form of data 

reduction was possible by applying principal component analysis. Before performing 

principal component analysis on the speaker covariance data, however, it was impor- 

tant to be aware of how stable the covariance estimates were, given the finite amount 

of speech data available for each speaker. In a previous study, Li et al. showed that a 

35 dimensional correlation matrix stabilized after approximately 3000 frames of data, 

sampled every 10 ms. A similar approach to determine the stability was undertaken 

in this study. Using a speaker for whom a large quantity of speech was available, a 

correlation matrix was computed from approximately 100 seconds of speech which, 

when sampled every 5 ms, resulted in nearly 20,000 sample points. Using a differ- 

ent set of data from the same speaker, correlations were incrementally estimated by 

gradually increasing the amount of speech involved in each computation. A plot of 

the average magnitude difference between the off-diagonal correlation coefficients of 

the fixed correlation matrix and those of the incremental matrices is shown in Fig- 
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Figure 5.13: Stability of the correlation estimate. 

This figure shows the average magnitude difference between the coefficients of a fixed cor- 
relation matrix, and those of a matrix computed from increasing amounts of data. 

ure 5.13. From these data it would appear that after approximately 6000 frames the 

correlation stability has settled to near its minimum value. This result matches well 

with the result of Li et al. since the sampling rate used in this study was twice that 

in their study. Both results indicate that after approximately 30 seconds of speech, 

the correlation matrix stabilize. Additionally, it was clear that 15 seconds of speech, 

which was the average amount of speech available for each speaker in the TIM IT 

dataset, could produce a reasonable estimate of the amount of correlation among the 

auditory outputs. 

5.4.3     Principal Component Analysis 

The first investigation using principal component analysis studied individual speaker 

characteristics.   A summary of the properties of the resulting components is shown 

in Figure 5.14, which plots the fraction of total Variance explained as the number of 

dimensions increases. Averaged over 100 speakers, over 98% of the variance could be 
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Figure 5.14: Fraction of total variance explained by components. 

This figure illustrates the fraction of total variance explained by a set of components as the 
number of components increases. Each point represents the average fraction across all 100 
speakers. The error bars represent one standard deviation. The top curve corresponds to 
the speaker-dependent principal components. The lower curve corresponds to half-cosine 

components. 

explained by the first 10 dimensions. 

The second analysis made with the principal component technique was to combine 

all data together to perform a single speaker-independent analysis of the total covari- 

ance structure. Interestingly, the resulting components explained almost as much of 

the total variance as did the speaker-dependent components. This would seem to 

indicate that the components were capturing only the general properties of speech, 

and were not overly sensitive to individual speaker characteristics. A plot of the first 

ten speaker-independent components is shown in Figure 5.15. 

From this figure, it is apparent that the components look very sinusoidal. This 

observation has been made previously by others to suggest the use of a cosine weight- 

ing function [64]. As shown in Figure 5.14, the first 10 cosine components can also 

explain a significant fraction of the variance in the speech data. From this plot, it is 
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Figure 5.15: First ten speaker-independent components. 

This figure presents the values of the first ten speaker-independent principal components. 
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Figure 5.16: Off-diagonal Correlations 

This figure illustrates the distribution of the off-diagonal coefficients from the 100 speaker 
correlation matrices when computed in the speaker-independent dimensions (thin line), and 
the half-cosine dimensions (thick line). This plot is computed the same way as Figure 5.11. 

not clear if there is in fact any advantage to using speaker-independent components 

over the cosine components since both representations explain a large fraction of the 

total variance in the speech signal with a small number of dimensions. However, as 

illustrated in Figure 5.16, the off-diagonal correlations are consistently smaller for the 

speaker-independent components than for the cosine components. An examination 

of the correlation as a function of the off-diagonal also indicates that the average 

correlation of the principal component dimensions is virtually zero, while the average 

value of the first off-diagonal correlation in the cosine components is -0.159. 

These analyses indicate that it is quite reasonable to reduce the dimensionality 

of the auditory outputs by a factor of four. In fact, it appears that there might be 

a considerable advantage in doing so because the resulting dimensions appear to be 
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largely uncorrelated. Thus, a diagonal distance metric would be better motivated 

in these dimensions than in the original representation. This observation perhaps 

explains why a diagonal distance metric in the cepstral domain is superior to diagonal 

metrics in the spectral domain since cepstra correspond to a cosine transformation 

which we have seen to be a highly uncorrelated set of dimensions [113]. 

5.5     Chapter Summary 

The work in this chapter was motivated by previously reported studies of acoustic 

segmentation and classification. After evaluation of the segmentation algorithms, an 

attempt was made to develop a representation with temporal properties superior to 

those of the mean-rate response. As was discussed in this chapter, the approach which 

was taken attempted to sample the outputs of the second stage of the auditory model 

pulse-synchronously, rather than at fixed time intervals. The resulting representation 

appears to have improved temporal and spectral characteristics compared to the 

mean-rate response. 

After studies on acoustic classification, it became apparent that the distance met- 

ric was important in determining the nature of the units. Investigations of the prop- 

erties of the mean-rate response indicated that there was a significant amount of cor- 

relation among the channels. A principal component analysis of this data indicated 

that a set of speaker-independent components could explain a significant amount of 

the covariance structure of the data with approximately one quarter of the original 

dimensions. 
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Chapter 6 

Summary and Future Work 

In this thesis a framework for decoding the speech signal based upon an acoustic 

description is advocated. By developing a framework that provides a rigorous seg- 

mental acoustic description of the speech signal, it is hoped that researchers will be 

offered a useful mechanism for uncovering regularities in the acoustic realization of 

underlying phonological units in the speech signal. At the very least, such a mech- 

anism should be able to verify hypotheses about sources of allophonic variation. At 

best, it provides a mechanism to help to discover additional sources of regularity. For 

these two reasons, an acoustic description is believed to be a valuable approach to 

speech analysis. 

In Chapter 1 it was suggested that a segmental acoustic description of speech 

could form part of an overall strategy for relating the speech signal to lexical entries. 

In this approach, the acoustic signal would be transformed into a sequence of acoustic 

events, and the relationship between these entities and the underlying phonemic forms 

would be determined by searching for regularities in a large set of training data. In 

effect, this approach bypasses a standard phonetic level of description, searching for 

units of speech which are distinguishable by their acoustic characteristics. 

In the following chapters, three fundamental issues concerning an acoustic descrip- 

tion of speech were explored. First, the outputs of an auditory model were examined 

for use as inputs for a segmental description of speech. Second, a mechanism was 

developed for describing the speech signal as a sequence of segments, delineated by 
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landmarks. Finally, a procedure was developed for finding regular sources of behavior 

in the segmental description of speech. In the following sections, some of the issues 

raised by these explorations will be discussed. 

6.1     Signal Representation 

The representation used for all aspects of the work in this thesis was based on the 

mean-rate response outputs of an auditory model developed by Seneff [103]. The use 

of an auditory model as the foundation for a signal representation was motivated by 

the belief that it is important to incorporate the constraints provided by the human 

auditory system into the representation of the speech signal. This is because speech 

is a purely human form of communication and has evolved as a function of the con- 

straints of both the production and the perception systems. Although this argument 

is reasonable, it is important to justify these claims with experimental evidence. In a 

study reported elsewhere, an experiment was conducted which examined the ability 

of different spectral representations to be used for acoustic segmentation [42]. The re- 

sults of this study found that acoustic segmentation could consistently be performed 

more reliably using critical-band filter outputs or mean-rate response outputs than 

more standard DFT or LPC-based spectral representations. This type of experiment 

could be extended to include the pulse-synchronous representation described in Chap- 

ter 5. Similar comparisons should also be made for the task of acoustic classification, 

and should be extended to recognition tasks as well [5,16,49]. 

Another dimension in which the auditory representations could be evaluated is by 

their ability to handle noise. The results of several studies have suggested that the 

auditory representations are robust under the presence of noise [40,50]. In addition 

to examining the behavior of Seneff's auditory model in this respect, it would also be 

worthwhile to understand the response to other factors which contribute to variability 

in the speech signal, but which are irrelevant to phonetic distinctions [10,60]. 

An alternative way of examining the usefulness of auditory representations is 
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to perform resynthesis and intelligibility experiments [102]. Experimental evidence 

demonstrating that important information was being captured by these representa- 

tions would strengthen the argument for their use. 

One of the current limitations of the auditory model described here is that it 

cannot adapt to long term changes in the speech signal. This is because the filter 

gains are fixed. If the speech signal becomes too loud or too soft, the auditory outputs 

become saturated, or fall below the spontaneous firing rate. Currently, this problem 

is avoided by pre-recording the entire utterance, and then normalizing all values so 

that the maximum value is always the same. For speech, this typically corresponds 

to a low vowel, since these sounds tend to have the loudest output [27]. 

A related problem involves adapting to changes in spectral tilt, due to changes in 

the recording conditions, or environmental changes. As was mentioned previously, the 

TIMIT utterances used for this work were recorded with a noise-canceling microphone, 

which results in significantly less energy in low-frequency channels than would be 

present with different recording mechanism. As was pointed out in Chapter 4, this 

result made it difficult to distinguish between sounds such as nasal consonants and 

silence, since the low-frequency murmur was greatly attenuated. The severity of the 

problem was reduced by increasing the gain in the low-frequency channels. However, 

this issue points out the need for work in the area of automatic long-term adaptation. 

6.2     Acoustic Segmentation 

In Chapter 3, a procedure was developed which attempted to automatically locate 

important acoustic landmarks in the speech signal. Since it is difficult to capture all 

acoustic events with a single level of description, a procedure was developed which 

provided a multi-level description of the speech signal by performing a time-ordered 

hierarchical clustering. An analysis of the resulting structure indicated that the ma- 

jority of acoustic landmarks were being located and organized by the dendrogram in 

a meaningful way. 
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The procedure for locating acoustic events was motivated by the concept of an 

acoustic segment being delineated by an onset and an offset in the speech signal. As 

was mentioned previously, this idea is difficult to implement in practice because the 

nature of important landmarks in the speech signal can be quite variable and can 

be extremely difficult to distinguish from variations in the speech signal which have 

no linguistic significance. As a means of reducing the difficulties associated with this 

problem, the notion of a multi-level description was introduced, and an algorithm 

was developed which attempted to produce such a structure. Although preliminary 

investigations appear encouraging, it is important to point out that the associations 

and dendrogram algorithms are implementations of a general idea and are not the 

most important issues themselves. 

Given that the algorithms reported here do appear to organize information in a 

meaningful fashion, there are many ways in which further work may be pursued. The 

construction of the dendrogram is extremely simple, since each acoustic segment is 

represented by an average spectral vector. It is possible that a more sophisticated 

representation, such as one which included time-varying information, might improve 

the dendrogram structure in cases where changes were quite gradual, as in vowel- 

semivowel sequences. In addition, the distance metric itself is quite simplistic. It 

would therefore be worthwhile to explore the use of other metrics, such as those with 

a stronger perceptual motivation [3,46,60,107]. Finally, it would be worthwhile to 

investigate the behavior of the dendrogram structure under degraded conditions. 

6.3     Acoustic Classification 

In Chapter 4, a procedure was developed for automatically clustering a set of 

sound segments into groups based on acoustic criteria. This procedure was applied 

to two different areas; one which investigated the coarse acoustic classes of all speech 

sounds, another which examined the context-dependent realizations of a few individ- 

ual phonemes. These studies attempted to demonstrate two necessary requirements 
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of any approach advocating a set of acoustic units to describe the speech signal: (1) 

that it is possible to uncover major sources of regularity that capture basic properties 

of all phonemes and, (2) that it is possible to capture important context-dependencies 

of individual phonemes. 

Throughout these experiments, the representation of the data, and the distance 

metric used to measure the similarity between data, were quite simple. In the first 

investigation for instance, a Euclidean distance metric was used to measure the dis- 

tance between acoustic segments. As was pointed out previously, the mean value of 

a spectral vector was often detrimental in determining the closest acoustic cluster. 

When the zero-mean distance metric was substituted for the Euclidean distance met- 

ric slightly improved results were obtained. However, the zero-mean distance metric is 

only a single example of an alternative. It would of great interest to examine metrics 

incorporating the principal components since these elements appear to capture more 

of the covariance structure amongst the different spectral channels. Alternatively, 

other metrics, such as those based on more perceptually important factors could be 

explored [3,60]. 

In addition to exploring alternative distance metrics, it is also possible to make 

the representation of the signal more sophisticated. For instance, observations could 

be made at specific locations in the speech signal, or dynamic measures could be 

made over the course of the segment. Ultimately it will be necessary to describe the 

realization of a phone in terms of its dynamic, as well as its static characteristics. 

The results of the studies of individual phonemes indicated that it was possible to 

automatically capture important context-dependencies based on acoustic information. 

There was also evidence suggesting that these regularities can generalize across sets 

of phonemes with similar phonetic features. In the study of the velar consonants for 

instance, it was found that the top three acoustic clusters look strikingly similar. Since 

it will be ultimately necessary to distinguish between these sounds, it will be necessary 

to incorporate other forms of representation. In the case of the velar consonants for 

instance, the duration of the voice onset time is a well known factor for distinguishing 
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between these two consonants. Figure 6.1 illustrates the differences between the voice 

onset time (VOT) of the velar stops in a set of 500 TIMIT utterances. Note that the 

VOT of /g/ is rarely longer than 50 ms. The overlap between these two distributions 

is partially caused by mixing data from both stressed and unstressed environments. 
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Figure 6.1: Voice onset time of velar stop consonants. 

This figure compares the voice onset times of /g/, shown in dark lines, versus /k/. Dura- 

tions are in seconds. 

6.4     Applications to Machine Recognition of Speech 

In this final section, some of the more practical implications of a segmental de- 

scription of speech are discussed by comparing this approach to those which do not 

embrace the concept of a segment, but instead process the speech signal on a frame- 
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by-frame basis [94,98] . For the purposes of the remainder of this discussion it will 

be assumed that some intermediate level of representation between the speech signal 

and the lexicon is hypothesized. The desirability of such a level has been discussed 

in Chapter 1. 

6.4.1     Motivation for Segmentation 

The first observation to be made about an acoustic segment is that it is more a 

natural unit of speech than a frame. A unit such as a frame is usually motivated 

by the minimum resolution needed to resolve short-time events, and has no general 

motivation for all speech sounds. While fixed-rate analysis procedures are reasonable 

representations of the speech signal, it is less reasonable to restrict the window of 

observation to a frame. By doing so, it becomes much more difficult to incorporate 

acoustic-phonetic information into the decoding process. A frame is only a single 

observation of the speech signal which forms part of a larger trajectory. A point- 

by-point examination of this trajectory limits the ways in which the signal may be 

analyzed. A segmental level of description of speech is a more powerful framework 

for applying acoustic-phonetic information since it provides a broader perspective of 

the local environment. Essentially, a frame-based analysis is but one of the many 

alternative strategies available to a segment based analysis. 

One of the kinds of acoustic-phonetic information that can be easily incorporated 

into a segment based framework is information about the inherent duration of sounds. 

For example, duration is well known to be a significant factor in determining voicing 

in many consonants, and is important in contrasting between tense and lax vowels 

such as /ae/ and /e/ [59]. It is more difficult to gracefully incorporate durational 

information into a frame-based analysis of speech since the duration of a segment is 

not known until the next segment has begun [72]. 

In addition to providing a graceful framework for incorporating explicit durational 

information, a segmental framework can easily avoid the implicit duration weighting 
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which is inherent in many frame-based systems [34,52]. Such weighting emphasizes 

the importance of longer segments relative to shorter segments. Since this particular 

weighting is likely to be undesirable, it is important that a framework be flexible 

enough to easily incorporate different weighting mechanisms. 

Another advantage of a segmental framework is that it is easier to incorporate 

relational temporal measurements than would be possible in a frame-based approach. 

In addition, a segmental framework easily allows a focus of attention on particular 

points in the speech signal, rather than uniformly weighting each observation point. 

In summary, a frame-based approach is a subset of a segmental description of 

speech, and has less flexibility to capture certain kinds of acoustic-phonetic informa- 

tion. In the following sections the various approaches to a segmental framework will 

be examined. 

6.4.2     Explicit vs Implicit Segmentation 

To date, the most common form of segmental description of speech has been 

one where landmarks are delineated explicitly in the speech signal. This is typically 

followed by acoustic-phonetic analysis of the resulting segments. There is a substantial 

amount of literature testifying to the difficulty of the task of segmentation [44,52]. 

Typically, a segmentation of the signal will either delete important acoustic-phonetic 

landmarks, or will insert irrelevant landmarks. Thus far, this type of single level of 

description has not proved to be very effective. 

An alternative to an explicit segmentation of the speech signal is an implicit, 

or stochastic segmentation which considers all possible alternatives. The obvious 

advantage of this kind of approach is that it is not prone to deleting or inserting 

segments as are explicit segmenters. The obvious disadvantage of these approaches 

are their enormous search space, with the associated computation costs. As discussed 

in Appendix B, an approach which considers all possible ways to segment n frames 
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into subsegments will have a total of 2n_1 possible segmentations.   For example, a 

2 second utterance analyzed with a frame-rate of 10 ms would have well over 10' 

possible segmentations.    Search strategies which perform a best first search with 

dynamic programming would reduce the search space to slightly more than an order 

of magnitude more than would be involved with a frame-based analysis. 

The multi-level framework developed in this thesis appears to be a compromise 

between a single level of description and a fully stochastic model. Many alternative 

segmentations are considered, but the number of alternatives are substantially re- 

duced by paying attention to landmarks found in the speech signal. Shrinking the 

size of the search space not only reduces the amount of computation, it also reduces 

the number of opportunities to make a mistake. A stochastic approach considers all 

possible segments everywhere, which is effect a 'blind' search strategy. 

Another advantage of the multi-level approach is that the resulting structure is 

explicit, and may be displayed in the form of a dendrogram. One of the disadvantages 

of a fully stochastic segmentation is that it is difficult to understand the competing 

alternatives, since the segmental description is implicit. Although the dendrogram 

will have 'errors,' the number of errors will be substantially smaller than is possible 

with a single level of description. In Chapter 3 it was shown that these errors are 

quite systematic, which suggests that they could be modeled. 

6.4.3    A Probabilistic Framework 

In all analyses of the dendrogram presented in this thesis, a path through the 

dendrogram was always located with a knowledge of the phonetic transcription. In 

speech recognition applications, it will be necessary to specify a path through the 

dendrogram that is the most probable, given the acoustic evidence. This could be 

achieved by assigning a likelihood to each landmark in the dendrogram. For example, 

distributions such as-the one illustrated in Figure 3.9, which plots the heights of 

valid boundaries and the heights of invalid ones, can be used to derive a likelihood 
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measure. By assigning a probability to each boundary, it is subsequently possible 

to turn the dendrogram into a probabilistic network. An example of such a network 

is shown in Figure 6.2. In the figure, the most probable path is the single path of 

sequential segments. Less likely segments with fewer boundaries are drawn on top of 

the most probable path, less likely segments with more boundaries are drawn below 

the most probable path. This approach is simplistic and should become more tightly 

coupled with the labeling process. Note, however, that this framework is not sensitive 

to duration. Thus, short but acoustically distinct segments can be considered quite 

probable. This is illustrated for the [k], and [i] in the second syllable of the work 

'coconut.' In addition, this mechanism normalizes all paths, so that two paths which 

span the same interval of time have both accounted for all intervening boundaries. 

Thus, it is possible to prune the search space if desired. 

In summary, there are several reasons why a segmental description could prove to 

be a useful representation for automatically decoding the speech signal. A multi-level 

structure such as the dendrogram can potentially make use of many of the advantages 

of an explicit description of speech, as well as those provided by purely stochastic 

approaches which consider many alternative segmentations of the speech signal. For 

this reason, the application of these structures to the task of speech recognition is a 

tantalizing area of further investigation. 
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Figure 6.2: A probabilistic network. 

This figure illustrates an example of an acoustic network for the utterance 'Coconut cream 
pie makes a nice dessert,' spoken by a female talker. Below the spectrogram is an acoustic 
network which is a probabilistic version of the dendrogram structure shown in Figure 3.4. 
The most probable path is single path of sequential segments. Less likely segments with 
fewer boundaries are drawn on top of the most probable path, while less likely alternatives 
with more boundaries are drawn below the path. 
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Appendix A 

Dendrograms 

This appendix contains examples of dendrograms of typical utterances from the 

TIMIT database. Each figure contains four displays of: (1) a wide-band spectrogram. 

(2) a dendrogram, (3) the speech waveform and, (4) the aligned phonetic transcrip- 

tion. The shaded regions in the dendrograms correspond to the sequence of acoustic 

segments which best aligned with the hand-marked phonetic transcription, based on 

the procedure described in Chapter 3. 
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Figure A.l: Dendrogram of 'A muscular abdomen is good for your back.' 
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Figure A.2: Dendrogram of 'Any contributions will be greatly appreciated.' 
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Figure A.3: Dendrogram of 'A doctor was in the ambulance with the patient.' 
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Figure A.4: Dendrogram of 'Rob sat by the pond and sketched the stray geese.' 
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Figure A.5: Dendrogram of 'Bagpipes and bongos are musical instruments.' 
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Figure A.6: Dendrogram of 'Even a simple vocabulary contains symbols. 
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Figure A.7: Dendrogram of 'Ambidextrous pickpockets accomplish more.' 
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Figure A.S-: Dendrogram of 'My ideal morning begins with hot coffee. 
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Figure A.9: Dendrogram of 'The small boy put the worm on the hook.' 
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Appendix B 

Stochastic Segmentation Computation 

A stochastic segmentation considers all possible segmentations of a set of n frames. 

This appendix illustrates the amount of computation that is involved with such an 

approach. First, consider the number of possible ways there are to divide n frames 

of speech into m possible segments, s(n,m). This is a recursive computation since 

we must consider all possible lengths of the first segment along with all possible 

segmentations of the remaining frames into m — 1 segments. Specifically, 

n—m+l 
s(n,m) =    Yl   s(n — k,m — l)        where    n > m,     and    s(n,l) = l,Vn    (B.l) 

The upper limit on the length of a segment is to ensure that all remaining segments 

have a length of at least one frame. This computation is illustrated in Figure B.l. 

Note that this figure suggests another computation for 

s(n,m) = s(n — l,m) + s(n — l,m — 1) 

or that there are (™~i) ways to segment n frames into m segments. 

Since the value of m is usually unknown, the total number of possible segmenta- 

tions is the sum of the number of segmentations for any value of m, 

n 

#r(n) = J2 s(nim) 
m=l 

In Figure B.l this corresponds to summing along the vertical dimension. From the 

figure we can see that there are 2n_1 possible segmentations of n frames. A simpler 
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Figure B.l: Stochastic segmentation computation. 

This figure illustrates the amount of computation involved in a stochastic segmentation. The 
value in each circle corresponds to the number of ways there are to segment n frames into m 
segments, s(n, m). This figure also illustrates the recursive nature of the computation since, 
as shown in equation B.l, s(n,m) may be computed from {s(n — l.m — l),s(n — 2, m — 1)...}. 
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way of arriving at this number would have been to consider that there are n - 1 

possible frames which can start (end) a segment since the first (last) frame must start 

(end) a segment. Given that any of the n - 1 frames has a choice of starting (ending) 

a segment, there are 2""1 possible segmentations. 

No matter how the analysis is made, the number of possible segmentations is 

overwhelming for any reasonable amount of speech. A 2 second utterance analysed 

with a frame-rate of 10 ms would have well over 1060 possible segmentations for 

instance. One way to reduce the space is to restrict the maximum length of a given 

segment to some number of frames, L. The computation is then modified to 

mm(L,n—m+l) 

sL{n.m)      = £ aL(n-k,m)     =      s(n.m) - s(n - L.m) 
k=i 

since we can consider this as adding up only a fraction of possible segmentations. 

From this computation we can see that there are I      - £   \- > 

possible segmentations. Reasonable values of L can be determined from studies of 

duration of sounds in continuous speech. A reasonable average phone duration is 

approximately SO ms [20]. Using a frame-rate of 5 ms, and assuming that a phone is 

never larger than twice its average, will lead to a value of L on the order of 30. Note 

however, that the total number of possible segmentations remains virtually the same 

as before. Thus, some other form of reducing the search space is necessary. 

With search strategies which perform best-first search with dynamic-programming, 

the amount of search involved in a stochastic segmentation is much more reasonable. 

Consider for example the case where M objects are to be recognized. This is a search 

problem, and it is desired to find the most probable sequence of the M objects. An 

algorithm which is commonly used to perform the decoding is the Viterbi search 

[38], which basically expands all possible paths uniformly in time, but uses dynamic 

programming to prune less probable paths. In this example, we will consider two 

strategies for representing the M objects. First, each object will be represented as 

a single state in a finite state network, where each state may connect to any other 

state.  From a computational perspective, at the nth observation, the ith object can 

V 
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either connect to itself, or it can connect to one of the other M - 1 objects. All to- 

gether, there are A/2 possible connections at the nth observation. If there are a total 

of N observations, then there will be a total of M2N combinations. The amount of 

computation therefore varies linearly with time. 

Consider now a segmental framework where each object must hypthesize a precise 

segment duration, unlike the previous framework. In this case, the ith state must 

consider ML{ possible connections, where £,,- is the number of possible segment lengths 

the ith state may have. The total number of combinations at the nth observation is 

therefore M2Lave where Lave is the average length of the M segments. Previously it 

was pointed out that a reasonable value of Lave would be around 16. Thus we can see 

that a stochastic segment based approach would in fact increase the total number of | 

computations by a little more than an order of magnitude. While this is substantial. 

it is far less computation than would be involved in an exhaustive search. 

Apart from the increase in computation, there is an additional drawback to a 

stochastic segment based model. With a simple first-order model, such as was used 

in the preceding example, and is common in the literature in the form of hidden 

Markov models, the Viterbi algorithm may be made quite efficient in memory storage, ^ 

since connections were only concerned with the previous observation. In a segmental 

model, however, this efficiency is lost, and storage on the order of MLave would be 

necessary. 
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